123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- import os, argparse
- import tensorflow as tf
- from tensorflow.python.framework import graph_util
- dir = os.path.dirname(os.path.realpath(__file__))
- def freeze_graph(model_folder):
- # We retrieve our checkpoint fullpath
- checkpoint = tf.train.get_checkpoint_state(model_folder)
- input_checkpoint = checkpoint.model_checkpoint_path
- # We precise the file fullname of our freezed graph
- absolute_model_folder = '/'.join(input_checkpoint.split('/')[:-1])
- output_graph = absolute_model_folder + '/frozen_model.pb'
- # Before exporting our graph, we need to precise what is our output node
- # This is how TF decides what part of the Graph he has to keep and what part it can dump
- # NOTE: this variable is plural, because you can have multiple output nodes
- output_node_names = 'generate_output/output'
- # We clear devices to allow TensorFlow to control on which device it will load operations
- clear_devices = True
- # We import the meta graph and retrieve a Saver
- saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
- # We retrieve the protobuf graph definition
- graph = tf.get_default_graph()
- input_graph_def = graph.as_graph_def()
- # We start a session and restore the graph weights
- with tf.Session() as sess:
- saver.restore(sess, input_checkpoint)
- # We use a built-in TF helper to export variables to constants
- output_graph_def = graph_util.convert_variables_to_constants(
- sess, # The session is used to retrieve the weights
- input_graph_def, # The graph_def is used to retrieve the nodes
- output_node_names.split(",") # The output node names are used to select the usefull nodes
- )
- # Finally we serialize and dump the output graph to the filesystem
- with tf.gfile.GFile(output_graph, 'wb') as f:
- f.write(output_graph_def.SerializeToString())
- print('%d ops in the final graph.' % len(output_graph_def.node))
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--model-folder', type=str, help='Model folder to export')
- args = parser.parse_args()
- freeze_graph(args.model_folder)
|