|
@@ -0,0 +1,53 @@
|
|
|
+# Installation
|
|
|
+
|
|
|
+We provide installation instructions for ImageNet classification experiments here.
|
|
|
+
|
|
|
+## Dependency Setup
|
|
|
+Create an new conda virtual environment
|
|
|
+```
|
|
|
+conda create -n convnext python=3.8 -y
|
|
|
+conda activate convnext
|
|
|
+```
|
|
|
+
|
|
|
+Install [Pytorch](https://pytorch.org/)>=1.8.0, [torchvision](https://pytorch.org/vision/stable/index.html)>=0.9.0 following official instructions. For example:
|
|
|
+```
|
|
|
+pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
|
|
|
+```
|
|
|
+
|
|
|
+Clone this repo and install required packages:
|
|
|
+```
|
|
|
+git clone https://github.com/facebookresearch/ConvNeXt
|
|
|
+pip install timm==0.3.2 tensorboardX six
|
|
|
+```
|
|
|
+
|
|
|
+The results in the paper are produced with `torch==1.8.0+cu111 torchvision==0.9.0+cu111 timm==0.3.2`.
|
|
|
+
|
|
|
+## Dataset Preparation
|
|
|
+
|
|
|
+Download the [ImageNet-1K](http://image-net.org/) classification dataset and structure the data as follows:
|
|
|
+```
|
|
|
+/path/to/imagenet-1k/
|
|
|
+ train/
|
|
|
+ class1/
|
|
|
+ img1.jpeg
|
|
|
+ class2/
|
|
|
+ img2.jpeg
|
|
|
+ val/
|
|
|
+ class1/
|
|
|
+ img3.jpeg
|
|
|
+ class2/
|
|
|
+ img4.jpeg
|
|
|
+```
|
|
|
+
|
|
|
+For pre-training on [ImageNet-22K](http://image-net.org/), download the dataset and structure the data as follows:
|
|
|
+```
|
|
|
+/path/to/imagenet-22k/
|
|
|
+ class1/
|
|
|
+ img1.jpeg
|
|
|
+ class2/
|
|
|
+ img2.jpeg
|
|
|
+ class3/
|
|
|
+ img3.jpeg
|
|
|
+ class4/
|
|
|
+ img4.jpeg
|
|
|
+```
|