|
@@ -0,0 +1,65 @@
|
|
|
|
+# coding: utf-8
|
|
|
|
+import sys
|
|
|
|
+
|
|
|
|
+import cv2
|
|
|
|
+import numpy as np
|
|
|
|
+from keras import models
|
|
|
|
+
|
|
|
|
+import pretreatment
|
|
|
|
+from mlearn_for_image import preprocess_input
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def get_text(img, offset=0):
|
|
|
|
+ text = pretreatment.get_text(img, offset)
|
|
|
|
+ text = cv2.cvtColor(text, cv2.COLOR_BGR2GRAY)
|
|
|
|
+ text = text / 255.0
|
|
|
|
+ h, w = text.shape
|
|
|
|
+ text.shape = (1, h, w, 1)
|
|
|
|
+ return text
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def main(fn):
|
|
|
|
+ # 读取并预处理验证码
|
|
|
|
+ img = cv2.imread(fn)
|
|
|
|
+ text = get_text(img)
|
|
|
|
+ imgs = np.array(list(pretreatment._get_imgs(img)))
|
|
|
|
+ imgs = preprocess_input(imgs)
|
|
|
|
+
|
|
|
|
+ # 识别文字
|
|
|
|
+ model = models.load_model('model.v2.0.h5')
|
|
|
|
+ label = model.predict(text)
|
|
|
|
+ label = label.argmax()
|
|
|
|
+ texts = ['打字机', '调色板', '跑步机', '毛线', '老虎', '安全帽', '沙包', '盘子', '本子', '药片', '双面胶', '龙舟', '红酒', '拖把', '卷尺',
|
|
|
|
+ '海苔', '红豆', '黑板', '热水袋', '烛台', '钟表', '路灯', '沙拉', '海报', '公交卡', '樱桃', '创可贴', '牌坊', '苍蝇拍', '高压锅',
|
|
|
|
+ '电线', '网球拍', '海鸥', '风铃', '订书机', '冰箱', '话梅', '排风机', '锅铲', '绿豆', '航母', '电子秤', '红枣', '金字塔', '鞭炮',
|
|
|
|
+ '菠萝', '开瓶器', '电饭煲', '仪表盘', '棉棒', '篮球', '狮子', '蚂蚁', '蜡烛', '茶盅', '印章', '茶几', '啤酒', '档案袋', '挂钟', '刺绣',
|
|
|
|
+ '铃铛', '护腕', '手掌印', '锦旗', '文具盒', '辣椒酱', '耳塞', '中国结', '蜥蜴', '剪纸', '漏斗', '锣', '蒸笼', '珊瑚', '雨靴', '薯条',
|
|
|
|
+ '蜜蜂', '日历', '口哨']
|
|
|
|
+ text = texts[label]
|
|
|
|
+ print(text)
|
|
|
|
+ # 获取下一个词
|
|
|
|
+ # 根据第一个词的长度来定位第二个词的位置
|
|
|
|
+ if len(text) == 1:
|
|
|
|
+ offset = 27
|
|
|
|
+ elif len(text) == 2:
|
|
|
|
+ offset = 47
|
|
|
|
+ else:
|
|
|
|
+ offset = 60
|
|
|
|
+ text = get_text(img, offset=offset)
|
|
|
|
+ if text.mean() < 0.95:
|
|
|
|
+ label = model.predict(text)
|
|
|
|
+ label = label.argmax()
|
|
|
|
+ text = texts[label]
|
|
|
|
+ print(text)
|
|
|
|
+
|
|
|
|
+ # 加载图片分类器
|
|
|
|
+ model = models.load_model('12306.image.model.h5')
|
|
|
|
+ labels = model.predict(imgs)
|
|
|
|
+ labels = labels.argmax(axis=1)
|
|
|
|
+ for pos, label in enumerate(labels):
|
|
|
|
+ print(pos // 4, pos % 4, texts[label])
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ main(sys.argv[1])
|
|
|
|
+# 运行方式 python3 main.py <img.jpg>
|