import copy import time import torch import torch.optim as optim from torch import nn # TODO: get these properly device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") feature_extract = True model_ft = None # TODO dataloaders_dict = None # TODO model_name = None # TODO def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False): since = time.time() val_acc_history = [] best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 # Detect if we have a GPU available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): # Get model outputs and calculate loss # Special case for inception because in training it has an auxiliary output. In train # mode we calculate the loss by summing the final output and the auxiliary output # but in testing we only consider the final output. if is_inception and phase == 'train': # https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4 * loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == 'val': val_acc_history.append(epoch_acc) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, val_acc_history # Send the model to GPU model_ft = model_ft.to(device) # Gather the parameters to be optimized/updated in this run. If we are # finetuning we will be updating all parameters. However, if we are # doing feature extract method, we will only update the parameters # that we have just initialized, i.e. the parameters with requires_grad # is True. params_to_update = model_ft.parameters() print("Params to learn:") if feature_extract: params_to_update = [] for name, param in model_ft.named_parameters(): if param.requires_grad is True: params_to_update.append(param) print("\t", name) else: for name, param in model_ft.named_parameters(): if param.requires_grad is True: print("\t", name) # Observe that all parameters are being optimized optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9) # Setup the loss fxn criterion = nn.CrossEntropyLoss() # Train and evaluate model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name == "inception"))