import random import math import numbers import collections import numpy as np import torch from PIL import Image, ImageOps try: import accimage except ImportError: accimage = None class Compose(object): """Composes several transforms together. Args: transforms (list of ``Transform`` objects): list of transforms to compose. Example: >>> transforms.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img): for t in self.transforms: img = t(img) return img class ToTensor(object): """Convert a ``PIL.Image`` or ``numpy.ndarray`` to tensor. Converts a PIL.Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]. """ def __call__(self, pic): """ Args: pic (PIL.Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ if isinstance(pic, np.ndarray): # handle numpy array img = torch.from_numpy(pic.transpose((2, 0, 1))) # backward compatibility return img.float() if accimage is not None and isinstance(pic, accimage.Image): nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32) pic.copyto(nppic) return torch.from_numpy(nppic) # handle PIL Image if pic.mode == 'I': img = torch.from_numpy(np.array(pic, np.int32, copy=False)) elif pic.mode == 'I;16': img = torch.from_numpy(np.array(pic, np.int16, copy=False)) else: img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes())) # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK if pic.mode == 'YCbCr': nchannel = 3 elif pic.mode == 'I;16': nchannel = 1 else: nchannel = len(pic.mode) img = img.view(pic.size[1], pic.size[0], nchannel) # put it from HWC to CHW format # yikes, this transpose takes 80% of the loading time/CPU img = img.transpose(0, 1).transpose(0, 2).contiguous() if isinstance(img, torch.ByteTensor): return img.float() else: return img class Normalize(object): """Normalize an tensor image with mean and standard deviation. Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std Args: mean (sequence): Sequence of means for R, G, B channels respecitvely. std (sequence): Sequence of standard deviations for R, G, B channels respecitvely. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ # TODO: make efficient for t, m, s in zip(tensor, self.mean, self.std): t.sub_(m).div_(s) return tensor class Scale(object): """Rescale the input PIL.Image to the given size. Args: size (sequence or int): Desired output size. If size is a sequence like (w, h), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR`` """ def __init__(self, size, interpolation=Image.BILINEAR): assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2) self.size = size self.interpolation = interpolation def __call__(self, img): """ Args: img (PIL.Image): Image to be scaled. Returns: PIL.Image: Rescaled image. """ if isinstance(self.size, int): w, h = img.size if (w <= h and w == self.size) or (h <= w and h == self.size): return img if w < h: ow = self.size oh = int(self.size * h / w) return img.resize((ow, oh), self.interpolation) else: oh = self.size ow = int(self.size * w / h) return img.resize((ow, oh), self.interpolation) else: return img.resize(self.size, self.interpolation) class CenterCrop(object): """Crops the given PIL.Image at the center. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. """ def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, img): """ Args: img (PIL.Image): Image to be cropped. Returns: PIL.Image: Cropped image. """ w, h = img.size th, tw = self.size x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) return img.crop((x1, y1, x1 + tw, y1 + th))