|
@@ -0,0 +1,104 @@
|
|
|
+import os
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import time
|
|
|
+import random
|
|
|
+
|
|
|
+class Wxjump(object):
|
|
|
+ '''微信跳一跳助手 '''
|
|
|
+
|
|
|
+ def __init__(self):
|
|
|
+ pass
|
|
|
+
|
|
|
+def get_screenshot(id):
|
|
|
+ os.system('adb shell screencap -p /sdcard/%s.png' % str(id))
|
|
|
+ os.system('adb pull /sdcard/%s.png ./data/result/' % str(id))
|
|
|
+
|
|
|
+
|
|
|
+def jump(distance):
|
|
|
+ # 这个参数还需要针对屏幕分辨率进行优化
|
|
|
+ press_time = int(distance * 1.35)
|
|
|
+
|
|
|
+ # 生成随机手机屏幕模拟触摸点
|
|
|
+ # 模拟触摸点如果每次都是同一位置,成绩上传可能无法通过验证
|
|
|
+ rand = random.randint(0, 9) * 10
|
|
|
+ cmd = ('adb shell input swipe %i %i %i %i ' + str(press_time)) \
|
|
|
+ % (320 + rand, 410 + rand, 320 + rand, 410 + rand)
|
|
|
+ os.system(cmd)
|
|
|
+ print(cmd)
|
|
|
+
|
|
|
+
|
|
|
+def get_center(img_canny, ):
|
|
|
+ # 利用边缘检测的结果寻找物块的上沿和下沿
|
|
|
+ # 进而计算物块的中心点
|
|
|
+ y_top = np.nonzero([max(row) for row in img_canny[400:]])[0][0] + 400
|
|
|
+ x_top = int(np.mean(np.nonzero(canny_img[y_top])))
|
|
|
+
|
|
|
+ y_bottom = y_top + 50
|
|
|
+ for row in range(y_bottom, H):
|
|
|
+ if canny_img[row, x_top] != 0:
|
|
|
+ y_bottom = row
|
|
|
+ break
|
|
|
+
|
|
|
+ x_center, y_center = x_top, (y_top + y_bottom) // 2
|
|
|
+ return img_canny, x_center, y_center
|
|
|
+
|
|
|
+
|
|
|
+# 第一次跳跃的距离是固定的
|
|
|
+# jump(530)
|
|
|
+time.sleep(1)
|
|
|
+
|
|
|
+# 匹配小跳棋的模板
|
|
|
+temp1 = cv2.imread('data/template/temp_player.jpg', 0)
|
|
|
+w1, h1 = temp1.shape[::-1] #77*209
|
|
|
+# 匹配游戏结束画面的模板
|
|
|
+temp_end = cv2.imread('data/template/temp_end.jpg', 0)
|
|
|
+# 匹配中心小圆点的模板
|
|
|
+temp_white_circle = cv2.imread('data/template/temp_white_circle.jpg', 0)
|
|
|
+w2, h2 = temp_white_circle.shape[::-1]
|
|
|
+
|
|
|
+# 循环直到游戏失败结束
|
|
|
+for i in range(100):
|
|
|
+ get_screenshot(i)
|
|
|
+ img_rgb = cv2.imread('data/result/%s.png' % i, 0)
|
|
|
+
|
|
|
+ # 如果在游戏截图中匹配到带"再玩一局"字样的模板,则循环中止
|
|
|
+ res_end = cv2.matchTemplate(img_rgb, temp_end, cv2.TM_CCOEFF_NORMED)
|
|
|
+ if cv2.minMaxLoc(res_end)[1] > 0.95:
|
|
|
+ print('Game over!')
|
|
|
+ break
|
|
|
+
|
|
|
+ # 模板匹配截图中小跳棋的位置
|
|
|
+ res1 = cv2.matchTemplate(img_rgb, temp1, cv2.TM_CCOEFF_NORMED)
|
|
|
+ min_val1, max_val1, min_loc1, max_loc1 = cv2.minMaxLoc(res1)
|
|
|
+ center1_loc = (max_loc1[0] + 39, max_loc1[1] + 189)
|
|
|
+
|
|
|
+ # 先尝试匹配截图中的中心原点,
|
|
|
+ # 如果匹配值没有达到0.95,则使用边缘检测匹配物块上沿
|
|
|
+ res2 = cv2.matchTemplate(img_rgb, temp_white_circle, cv2.TM_CCOEFF_NORMED)
|
|
|
+ min_val2, max_val2, min_loc2, max_loc2 = cv2.minMaxLoc(res2)
|
|
|
+ if max_val2 > 0.95:
|
|
|
+ print('found white circle!')
|
|
|
+ x_center, y_center = max_loc2[0] + w2 // 2, max_loc2[1] + h2 // 2
|
|
|
+ else:
|
|
|
+ # 边缘检测
|
|
|
+ img_rgb = cv2.GaussianBlur(img_rgb, (5, 5), 0)
|
|
|
+ canny_img = cv2.Canny(img_rgb, 1, 10)
|
|
|
+ H, W = canny_img.shape
|
|
|
+
|
|
|
+ # 消去小跳棋轮廓对边缘检测结果的干扰
|
|
|
+ for k in range(max_loc1[1] - 10, max_loc1[1] + 189):
|
|
|
+ for b in range(max_loc1[0] - 10, max_loc1[0] + 100):
|
|
|
+ canny_img[k][b] = 0
|
|
|
+ cv2.imwrite('data/result/canny_img%s.png' % i, canny_img)
|
|
|
+ img_rgb, x_center, y_center = get_center(canny_img)
|
|
|
+
|
|
|
+ # 将图片输出以供调试
|
|
|
+ img_rgb = cv2.circle(img_rgb, (x_center, y_center), 10, 255, -1)
|
|
|
+ # cv2.rectangle(canny_img, max_loc1, center1_loc, 255, 2)
|
|
|
+ cv2.imwrite('data/result/last.png', img_rgb)
|
|
|
+
|
|
|
+ distance = (center1_loc[0] - x_center) ** 2 + (center1_loc[1] - y_center) ** 2
|
|
|
+ distance = distance ** 0.5
|
|
|
+ jump(distance)
|
|
|
+ time.sleep(random.randrange(11,20)/10.0)
|