# Open-Sora 复现类Sora视频生成 ## Instal ``` # create a virtual env conda create -n opensora python=3.10 # install torch # the command below is for CUDA 12.1, choose install commands from # https://pytorch.org/get-started/locally/ based on your own CUDA version pip3 install torch torchvision # install flash attention (optional) pip install packaging ninja pip install flash-attn --no-build-isolation # install apex (optional) pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git # install xformers pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121 # install this project git clone https://github.com/hpcaitech/Open-Sora cd Open-Sora pip install -v . ``` 推理,视频生成: ``` # Sample 16x256x256 (5s/sample) torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path ./path/to/your/ckpt.pth # Sample 16x512x512 (20s/sample, 100 time steps) torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x512x512.py --ckpt-path ./path/to/your/ckpt.pth # Sample 64x512x512 (40s/sample, 100 time steps) torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/64x512x512.py --ckpt-path ./path/to/your/ckpt.pth # Sample 64x512x512 with sequence parallelism (30s/sample, 100 time steps) # sequence parallelism is enabled automatically when nproc_per_node is larger than 1 torchrun --standalone --nproc_per_node 2 scripts/inference.py configs/opensora/inference/64x512x512.py --ckpt-path ./path/to/your/ckpt.pth ```