import argparse import tensorflow as tf CROP_SIZE = 256 # scale_size = CROP_SIZE ngf = 64 ndf = 64 def preprocess(image): with tf.name_scope('preprocess'): # [0, 1] => [-1, 1] return image * 2 - 1 def deprocess(image): with tf.name_scope('deprocess'): # [-1, 1] => [0, 1] return (image + 1) / 2 def gen_conv(batch_input, out_channels): # [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, out_channels] initializer = tf.random_normal_initializer(0, 0.02) # if a.separable_conv: # return tf.layers.separable_conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer) # else: return tf.layers.conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", kernel_initializer=initializer) def lrelu(x, a): with tf.name_scope('lrelu'): # adding these together creates the leak part and linear part # then cancels them out by subtracting/adding an absolute value term # leak: a*x/2 - a*abs(x)/2 # linear: x/2 + abs(x)/2 # this block looks like it has 2 inputs on the graph unless we do this x = tf.identity(x) return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x) def batchnorm(inputs): return tf.layers.batch_normalization(inputs, axis=3, epsilon=1e-5, momentum=0.1, training=True, gamma_initializer=tf.random_normal_initializer(1.0, 0.02)) # with tf.variable_scope('batchnorm'): # # this block looks like it has 3 inputs on the graph unless we do this # input = tf.identity(input) # # channels = input.get_shape()[3] # offset = tf.get_variable('offset', [channels], dtype=tf.float32, initializer=tf.zeros_initializer()) # scale = tf.get_variable('scale', [channels], dtype=tf.float32, # initializer=tf.random_normal_initializer(1.0, 0.02)) # mean, variance = tf.nn.moments(input, axes=[0, 1, 2], keep_dims=False) # variance_epsilon = 1e-5 # normalized = tf.nn.batch_normalization(input, mean, variance, offset, scale, variance_epsilon=variance_epsilon) # return normalized def gen_deconv(batch_input, out_channels): # [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, out_channels] initializer = tf.random_normal_initializer(0, 0.02) # if a.separable_conv: # _b, h, w, _c = batch_input.shape # resized_input = tf.image.resize_images(batch_input, [h * 2, w * 2], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) # return tf.layers.separable_conv2d(resized_input, out_channels, kernel_size=4, strides=(1, 1), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer) # else: return tf.layers.conv2d_transpose(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", kernel_initializer=initializer) def process_image(x): with tf.name_scope('load_images'): raw_input = tf.image.convert_image_dtype(x, dtype=tf.float32) raw_input.set_shape([None, None, 3]) # break apart image pair and move to range [-1, 1] width = tf.shape(raw_input)[1] # [height, width, channels] a_images = preprocess(raw_input[:, :width // 2, :]) b_images = preprocess(raw_input[:, width // 2:, :]) inputs, targets = [a_images, b_images] # synchronize seed for image operations so that we do the same operations to both # input and output images def transform(image): r = image # area produces a nice downscaling, but does nearest neighbor for upscaling # assume we're going to be doing downscaling here r = tf.image.resize_images(r, [CROP_SIZE, CROP_SIZE], method=tf.image.ResizeMethod.AREA) return r with tf.name_scope('input_images'): input_images = tf.expand_dims(transform(inputs), 0) with tf.name_scope('target_images'): target_images = tf.expand_dims(transform(targets), 0) return input_images, target_images # Tensor('batch:1', shape=(1, 256, 256, 3), dtype=float32) -> 1 batch size def create_generator(generator_inputs, generator_outputs_channels): layers = [] # encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf] with tf.variable_scope('encoder_1'): output = gen_conv(generator_inputs, ngf) layers.append(output) layer_specs = [ ngf * 2, # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2] ngf * 4, # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4] ngf * 8, # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8] ngf * 8, # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8] ngf * 8, # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8] ngf * 8, # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8] ngf * 8, # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8] ] for out_channels in layer_specs: with tf.variable_scope('encoder_%d' % (len(layers) + 1)): rectified = lrelu(layers[-1], 0.2) # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels] convolved = gen_conv(rectified, out_channels) output = batchnorm(convolved) layers.append(output) layer_specs = [ (ngf * 8, 0.5), # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2] (ngf * 8, 0.5), # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2] (ngf * 8, 0.5), # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2] (ngf * 8, 0.0), # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2] (ngf * 4, 0.0), # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2] (ngf * 2, 0.0), # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2] (ngf, 0.0), # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2] ] num_encoder_layers = len(layers) for decoder_layer, (out_channels, dropout) in enumerate(layer_specs): skip_layer = num_encoder_layers - decoder_layer - 1 with tf.variable_scope('decoder_%d' % (skip_layer + 1)): if decoder_layer == 0: # first decoder layer doesn't have skip connections # since it is directly connected to the skip_layer input = layers[-1] else: input = tf.concat([layers[-1], layers[skip_layer]], axis=3) rectified = tf.nn.relu(input) # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels] output = gen_deconv(rectified, out_channels) output = batchnorm(output) if dropout > 0.0: output = tf.nn.dropout(output, keep_prob=1 - dropout) layers.append(output) # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels] with tf.variable_scope('decoder_1'): input = tf.concat([layers[-1], layers[0]], axis=3) rectified = tf.nn.relu(input) output = gen_deconv(rectified, generator_outputs_channels) output = tf.tanh(output) layers.append(output) return layers[-1] def create_model(inputs, targets): with tf.variable_scope('generator'): # as scope out_channels = int(targets.get_shape()[-1]) outputs = create_generator(inputs, out_channels) return outputs def convert(image): return tf.image.convert_image_dtype(image, dtype=tf.uint8, saturate=True, name='output') # output tensor def generate_output(x): with tf.name_scope('generate_output'): test_inputs, test_targets = process_image(x) # inputs and targets are [batch_size, height, width, channels] model = create_model(test_inputs, test_targets) # deprocess files outputs = deprocess(model) # reverse any processing on images so they can be written to disk or displayed to user converted_outputs = convert(outputs) return converted_outputs if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model-input', dest='input_folder', type=str, help='Model folder to import.') parser.add_argument('--model-output', dest='output_folder', type=str, help='Model (reduced) folder to export.') args = parser.parse_args() x = tf.placeholder(tf.uint8, shape=(256, 512, 3), name='image_tensor') # input tensor y = generate_output(x) with tf.Session() as sess: # Restore original model saver = tf.train.Saver() checkpoint = tf.train.latest_checkpoint(args.input_folder) saver.restore(sess, checkpoint) # Export reduced model used for prediction saver = tf.train.Saver() saver.save(sess, '{}/reduced_model'.format(args.output_folder)) print("Model is exported to {}".format(checkpoint))