Open source code for AlphaFold. https://github.com/deepmind/alphafold
Android advanced developer c367bf67ff Update 'README.md' | 2 years ago | |
---|---|---|
.gitignore | 2 years ago | |
LICENSE | 2 years ago | |
README.md | 2 years ago |
This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document.
We also provide an implementation of AlphaFold-Multimer. This represents a work in progress and AlphaFold-Multimer isn't expected to be as stable as our monomer AlphaFold system. Read the guide for how to upgrade and update code.
Any publication that discloses findings arising from using this source code or the model parameters should cite the AlphaFold paper and, if applicable, the AlphaFold-Multimer paper.
Please also refer to the Supplementary Information for a detailed description of the method.
You can use a slightly simplified version of AlphaFold with this Colab notebook or community-supported versions (see below).
If you have any questions, please contact the AlphaFold team at alphafold@deepmind.com.
You will need a machine running Linux, AlphaFold does not support other operating systems.
The following steps are required in order to run AlphaFold:
Check that AlphaFold will be able to use a GPU by running:
docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
The output of this command should show a list of your GPUs. If it doesn't, check if you followed all steps correctly when setting up the NVIDIA Container Toolkit or take a look at the following NVIDIA Docker issue.
If you wish to run AlphaFold using Singularity (a common containerization platform on HPC systems) we recommend using some of the third party Singularity setups as linked in https://github.com/deepmind/alphafold/issues/10 or https://github.com/deepmind/alphafold/issues/24.
This step requires aria2c
to be installed on your machine.
AlphaFold needs multiple genetic (sequence) databases to run:
We provide a script scripts/download_all_data.sh
that can be used to download
and set up all of these databases:
Default:
scripts/download_all_data.sh <DOWNLOAD_DIR>
will download the full databases.
With reduced_dbs
:
scripts/download_all_data.sh <DOWNLOAD_DIR> reduced_dbs
will download a reduced version of the databases to be used with the
reduced_dbs
database preset.
:ledger: Note: The download directory <DOWNLOAD_DIR>
should not be a
subdirectory in the AlphaFold repository directory. If it is, the Docker build
will be slow as the large databases will be copied during the image creation.
We don't provide exactly the database versions used in CASP14 – see the note on reproducibility. Some of the databases are mirrored for speed, see mirrored databases.
:ledger: Note: The total download size for the full databases is around 415 GB and the total size when unzipped is 2.2 TB. Please make sure you have a large enough hard drive space, bandwidth and time to download. We recommend using an SSD for better genetic search performance.
The download_all_data.sh
script will also download the model parameter files.
Once the script has finished, you should have the following directory structure:
$DOWNLOAD_DIR/ # Total: ~ 2.2 TB (download: 438 GB)
bfd/ # ~ 1.7 TB (download: 271.6 GB)
# 6 files.
mgnify/ # ~ 64 GB (download: 32.9 GB)
mgy_clusters_2018_12.fa
params/ # ~ 3.5 GB (download: 3.5 GB)
# 5 CASP14 models,
# 5 pTM models,
# 5 AlphaFold-Multimer models,
# LICENSE,
# = 16 files.
pdb70/ # ~ 56 GB (download: 19.5 GB)
# 9 files.
pdb_mmcif/ # ~ 206 GB (download: 46 GB)
mmcif_files/
# About 180,000 .cif files.
obsolete.dat
pdb_seqres/ # ~ 0.2 GB (download: 0.2 GB)
pdb_seqres.txt
small_bfd/ # ~ 17 GB (download: 9.6 GB)
bfd-first_non_consensus_sequences.fasta
uniclust30/ # ~ 86 GB (download: 24.9 GB)
uniclust30_2018_08/
# 13 files.
uniprot/ # ~ 98.3 GB (download: 49 GB)
uniprot.fasta
uniref90/ # ~ 58 GB (download: 29.7 GB)
uniref90.fasta
bfd/
is only downloaded if you download the full databases, and small_bfd/
is only downloaded if you download the reduced databases.
While the AlphaFold code is licensed under the Apache 2.0 License, the AlphaFold parameters are made available under the terms of the CC BY 4.0 license. Please see the Disclaimer below for more detail.
The AlphaFold parameters are available from
https://storage.googleapis.com/alphafold/alphafold_params_2022-03-02.tar, and
are downloaded as part of the scripts/download_all_data.sh
script. This script
will download parameters for:
If you have AlphaFold v2.0.0 or v2.0.1 you can either reinstall AlphaFold fully from scratch (remove everything and run the setup from scratch) or you can do an incremental update that will be significantly faster but will require a bit more work. Make sure you follow these steps in the exact order they are listed below:
git fetch origin main
to get all code updates.scripts/download_uniprot.sh <DOWNLOAD_DIR>
.<DOWNLOAD_DIR>/pdb_mmcif
. It is needed to have PDB SeqRes and
PDB from exactly the same date. Failure to do this step will result in
potential errors when searching for templates when running
AlphaFold-Multimer.scripts/download_pdb_mmcif.sh <DOWNLOAD_DIR>
.scripts/download_pdb_seqres.sh <DOWNLOAD_DIR>
.<DOWNLOAD_DIR>/params
.scripts/download_alphafold_params.sh <DOWNLOAD_DIR>
.We tried to keep the API as much backwards compatible as possible, but we had to change the following:
RunModel.predict()
now needs a random_seed
argument as MSA sampling
happens inside the Multimer model.preset
flag in run_alphafold.py
and run_docker.py
was split into
db_preset
and model_preset
.model_names
but rather using the
model_preset
flag. If you want to customize which models are used for each
preset, you will have to modify the the MODEL_PRESETS
dictionary in
alphafold/model/config.py
.data_dir
flag is now needed when using run_docker.py
.The AlphaFold-Multimer model weights have been updated, these new models have greatly reduced numbers of clashes on average and are slightly more accurate.
A flag --num_multimer_predictions_per_model
has been added that controls how
many predictions will be made per model, by default the offline system will run
each model 5 times for a total of 25 predictions.
The --is_prokaryote_list
flag has been removed along with the is_prokaryote
argument in run_alphafold.predict_structure()
, eukaryotes and prokaryotes are
now paired in the same way.
To use the deprecated v2.1.0 AlphaFold-Multimer model weights:
SOURCE_URL
in scripts/download_alphafold_params.sh
to
https://storage.googleapis.com/alphafold/alphafold_params_2022-01-19.tar
,
and download the old parameters._v2
in the multimer MODEL_PRESETS
in config.py
.The simplest way to run AlphaFold is using the provided Docker script. This
was tested on Google Cloud with a machine using the nvidia-gpu-cloud-image
with 12 vCPUs, 85 GB of RAM, a 100 GB boot disk, the databases on an additional
3 TB disk, and an A100 GPU.
Clone this repository and cd
into it.
git clone https://github.com/deepmind/alphafold.git
Build the Docker image:
docker build -f docker/Dockerfile -t alphafold .
If you encounter the following error:
W: GPG error: https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC
E: The repository 'https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease' is not signed.
use the workaround described in https://github.com/deepmind/alphafold/issues/463#issuecomment-1124881779.
Install the run_docker.py
dependencies. Note: You may optionally wish to
create a
Python Virtual Environment
to prevent conflicts with your system's Python environment.
pip3 install -r docker/requirements.txt
Make sure that the output directory exists (the default is /tmp/alphafold
)
and that you have sufficient permissions to write into it. You can make sure
that is the case by manually running mkdir /tmp/alphafold
and
chmod 770 /tmp/alphafold
.
Run run_docker.py
pointing to a FASTA file containing the protein
sequence(s) for which you wish to predict the structure. If you are
predicting the structure of a protein that is already in PDB and you wish to
avoid using it as a template, then max_template_date
must be set to be
before the release date of the structure. You must also provide the path to
the directory containing the downloaded databases. For example, for the
T1050 CASP14 target:
python3 docker/run_docker.py \
--fasta_paths=T1050.fasta \
--max_template_date=2020-05-14 \
--data_dir=$DOWNLOAD_DIR
By default, Alphafold will attempt to use all visible GPU devices. To use a
subset, specify a comma-separated list of GPU UUID(s) or index(es) using the
--gpu_devices
flag. See
GPU enumeration
for more details.
You can control which AlphaFold model to run by adding the
--model_preset=
flag. We provide the following models:
monomer: This is the original model used at CASP14 with no ensembling.
monomer_casp14: This is the original model used at CASP14 with
num_ensemble=8
, matching our CASP14 configuration. This is largely
provided for reproducibility as it is 8x more computationally
expensive for limited accuracy gain (+0.1 average GDT gain on CASP14
domains).
monomer_ptm: This is the original CASP14 model fine tuned with the pTM head, providing a pairwise confidence measure. It is slightly less accurate than the normal monomer model.
multimer: This is the AlphaFold-Multimer model. To use this model, provide a multi-sequence FASTA file. In addition, the UniProt database should have been downloaded.
You can control MSA speed/quality tradeoff by adding
--db_preset=reduced_dbs
or --db_preset=full_dbs
to the run command. We
provide the following presets:
reduced_dbs: This preset is optimized for speed and lower hardware requirements. It runs with a reduced version of the BFD database. It requires 8 CPU cores (vCPUs), 8 GB of RAM, and 600 GB of disk space.
full_dbs: This runs with all genetic databases used at CASP14.
Running the command above with the monomer
model preset and the
reduced_dbs
data preset would look like this:
python3 docker/run_docker.py \
--fasta_paths=T1050.fasta \
--max_template_date=2020-05-14 \
--model_preset=monomer \
--db_preset=reduced_dbs \
--data_dir=$DOWNLOAD_DIR
All steps are the same as when running the monomer system, but you will have to
--model_preset=multimer
,An example that folds a protein complex multimer.fasta
:
python3 docker/run_docker.py \
--fasta_paths=multimer.fasta \
--max_template_date=2020-05-14 \
--model_preset=multimer \
--data_dir=$DOWNLOAD_DIR
By default the multimer system will run 5 seeds per model (25 total predictions)
for a small drop in accuracy you may wish to run a single seed per model. This
can be done via the --num_multimer_predictions_per_model
flag, e.g. set it to
--num_multimer_predictions_per_model=1
to run a single seed per model.
Below are examples on how to use AlphaFold in different scenarios.
Say we have a monomer with the sequence <SEQUENCE>
. The input fasta should be:
>sequence_name
<SEQUENCE>
Then run the following command:
python3 docker/run_docker.py \
--fasta_paths=monomer.fasta \
--max_template_date=2021-11-01 \
--model_preset=monomer \
--data_dir=$DOWNLOAD_DIR
Say we have a homomer with 3 copies of the same sequence
<SEQUENCE>
. The input fasta should be:
>sequence_1
<SEQUENCE>
>sequence_2
<SEQUENCE>
>sequence_3
<SEQUENCE>
Then run the following command:
python3 docker/run_docker.py \
--fasta_paths=homomer.fasta \
--max_template_date=2021-11-01 \
--model_preset=multimer \
--data_dir=$DOWNLOAD_DIR
Say we have an A2B3 heteromer, i.e. with 2 copies of
<SEQUENCE A>
and 3 copies of <SEQUENCE B>
. The input fasta should be:
>sequence_1
<SEQUENCE A>
>sequence_2
<SEQUENCE A>
>sequence_3
<SEQUENCE B>
>sequence_4
<SEQUENCE B>
>sequence_5
<SEQUENCE B>
Then run the following command:
python3 docker/run_docker.py \
--fasta_paths=heteromer.fasta \
--max_template_date=2021-11-01 \
--model_preset=multimer \
--data_dir=$DOWNLOAD_DIR
Say we have a two monomers, monomer1.fasta
and monomer2.fasta
.
We can fold both sequentially by using the following command:
python3 docker/run_docker.py \
--fasta_paths=monomer1.fasta,monomer2.fasta \
--max_template_date=2021-11-01 \
--model_preset=monomer \
--data_dir=$DOWNLOAD_DIR
Say we have a two multimers, multimer1.fasta
and multimer2.fasta
.
We can fold both sequentially by using the following command:
python3 docker/run_docker.py \
--fasta_paths=multimer1.fasta,multimer2.fasta \
--max_template_date=2021-11-01 \
--model_preset=multimer \
--data_dir=$DOWNLOAD_DIR
The outputs will be saved in a subdirectory of the directory provided via the
--output_dir
flag of run_docker.py
(defaults to /tmp/alphafold/
). The
outputs include the computed MSAs, unrelaxed structures, relaxed structures,
ranked structures, raw model outputs, prediction metadata, and section timings.
The --output_dir
directory will have the following structure:
<target_name>/
features.pkl
ranked_{0,1,2,3,4}.pdb
ranking_debug.json
relaxed_model_{1,2,3,4,5}.pdb
result_model_{1,2,3,4,5}.pkl
timings.json
unrelaxed_model_{1,2,3,4,5}.pdb
msas/
bfd_uniclust_hits.a3m
mgnify_hits.sto
uniref90_hits.sto
The contents of each output file are as follows:
features.pkl
– A pickle
file containing the input feature NumPy arrays
used by the models to produce the structures.unrelaxed_model_*.pdb
– A PDB format text file containing the predicted
structure, exactly as outputted by the model.relaxed_model_*.pdb
– A PDB format text file containing the predicted
structure, after performing an Amber relaxation procedure on the unrelaxed
structure prediction (see Jumper et al. 2021, Suppl. Methods 1.8.6 for
details).ranked_*.pdb
– A PDB format text file containing the relaxed predicted
structures, after reordering by model confidence. Here ranked_0.pdb
should
contain the prediction with the highest confidence, and ranked_4.pdb
the
prediction with the lowest confidence. To rank model confidence, we use
predicted LDDT (pLDDT) scores (see Jumper et al. 2021, Suppl. Methods 1.9.6
for details).ranking_debug.json
– A JSON format text file containing the pLDDT values
used to perform the model ranking, and a mapping back to the original model
names.timings.json
– A JSON format text file containing the times taken to run
each section of the AlphaFold pipeline.msas/
- A directory containing the files describing the various genetic
tool hits that were used to construct the input MSA.result_model_*.pkl
– A pickle
file containing a nested dictionary of the
various NumPy arrays directly produced by the model. In addition to the
output of the structure module, this includes auxiliary outputs such as:
distogram/logits
contains a NumPy array of shape [N_res,
N_res, N_bins] and distogram/bin_edges
contains the definition of the
bins).plddt
contains a NumPy array of shape
[N_res] with the range of possible values from 0
to 100
, where 100
means most confident). This can serve to identify sequence regions
predicted with high confidence or as an overall per-target confidence
score when averaged across residues.ptm
field
contains a scalar). As a predictor of a global superposition metric,
this score is designed to also assess whether the model is confident in
the overall domain packing.predicted_aligned_error
contains a NumPy array of shape [N_res,
N_res] with the range of possible values from 0
to
max_predicted_aligned_error
, where 0
means most confident). This can
serve for a visualisation of domain packing confidence within the
structure.The pLDDT confidence measure is stored in the B-factor field of the output PDB files (although unlike a B-factor, higher pLDDT is better, so care must be taken when using for tasks such as molecular replacement).
This code has been tested to match mean top-1 accuracy on a CASP14 test set with pLDDT ranking over 5 model predictions (some CASP targets were run with earlier versions of AlphaFold and some had manual interventions; see our forthcoming publication for details). Some targets such as T1064 may also have high individual run variance over random seeds.
The provided inference script is optimized for predicting the structure of a
single protein, and it will compile the neural network to be specialized to
exactly the size of the sequence, MSA, and templates. For large proteins, the
compile time is a negligible fraction of the runtime, but it may become more
significant for small proteins or if the multi-sequence alignments are already
precomputed. In the bulk inference case, it may make sense to use our
make_fixed_size
function to pad the inputs to a uniform size, thereby reducing
the number of compilations required.
We do not provide a bulk inference script, but it should be straightforward to
develop on top of the RunModel.predict
method with a parallel system for
precomputing multi-sequence alignments. Alternatively, this script can be run
repeatedly with only moderate overhead.
AlphaFold's output for a small number of proteins has high inter-run variance, and may be affected by changes in the input data. The CASP14 target T1064 is a notable example; the large number of SARS-CoV-2-related sequences recently deposited changes its MSA significantly. This variability is somewhat mitigated by the model selection process; running 5 models and taking the most confident.
To reproduce the results of our CASP14 system as closely as possible you must use the same database versions we used in CASP. These may not match the default versions downloaded by our scripts.
For genetics:
For templates:
An alternative for templates is to use the latest PDB and PDB70, but pass the
flag --max_template_date=2020-05-14
, which restricts templates only to
structures that were available at the start of CASP14.
If you use the code or data in this package, please cite:
@Article{AlphaFold2021,
author = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
journal = {Nature},
title = {Highly accurate protein structure prediction with {AlphaFold}},
year = {2021},
volume = {596},
number = {7873},
pages = {583--589},
doi = {10.1038/s41586-021-03819-2}
}
In addition, if you use the AlphaFold-Multimer mode, please cite:
@article {AlphaFold-Multimer2021,
author = {Evans, Richard and O{\textquoteright}Neill, Michael and Pritzel, Alexander and Antropova, Natasha and Senior, Andrew and Green, Tim and {\v{Z}}{\'\i}dek, Augustin and Bates, Russ and Blackwell, Sam and Yim, Jason and Ronneberger, Olaf and Bodenstein, Sebastian and Zielinski, Michal and Bridgland, Alex and Potapenko, Anna and Cowie, Andrew and Tunyasuvunakool, Kathryn and Jain, Rishub and Clancy, Ellen and Kohli, Pushmeet and Jumper, John and Hassabis, Demis},
journal = {bioRxiv}
title = {Protein complex prediction with AlphaFold-Multimer},
year = {2021},
elocation-id = {2021.10.04.463034},
doi = {10.1101/2021.10.04.463034},
URL = {https://www.biorxiv.org/content/early/2021/10/04/2021.10.04.463034},
eprint = {https://www.biorxiv.org/content/early/2021/10/04/2021.10.04.463034.full.pdf},
}
Colab notebooks provided by the community (please note that these notebooks may vary from our full AlphaFold system and we did not validate their accuracy):
AlphaFold communicates with and/or references the following separate libraries and packages:
We thank all their contributors and maintainers!
If you have any questions not covered in this overview, please contact the AlphaFold team at alphafold@deepmind.com.
We would love to hear your feedback and understand how AlphaFold has been useful in your research. Share your stories with us at alphafold@deepmind.com.
This is not an officially supported Google product.
Copyright 2021 DeepMind Technologies Limited.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
The AlphaFold parameters are made available under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can find details at: https://creativecommons.org/licenses/by/4.0/legalcode
Use of the third-party software, libraries or code referred to in the Acknowledgements section above may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code is subject to any such terms and you should check that you can comply with any applicable restrictions or terms and conditions before use.
The following databases have been mirrored by DeepMind, and are available with reference to the following:
BFD (unmodified), by Steinegger M. and Söding J., available under a Creative Commons Attribution-ShareAlike 4.0 International License.
BFD (modified), by Steinegger M. and Söding J., modified by DeepMind, available under a Creative Commons Attribution-ShareAlike 4.0 International License. See the Methods section of the AlphaFold proteome paper for details.
Uniclust30: v2018_08 (unmodified), by Mirdita M. et al., available under a Creative Commons Attribution-ShareAlike 4.0 International License.
MGnify: v2018_12 (unmodified), by Mitchell AL et al., available free of all copyright restrictions and made fully and freely available for both non-commercial and commercial use under CC0 1.0 Universal (CC0 1.0) Public Domain Dedication.