sort_by_disk.py 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. '''
  4. 按照磁盘占用率从大到小装箱,即按照磁盘先用完为止进行分配实例到主机。
  5. @Auther :liuyuqi.gov@msn.cn
  6. @Time :2018/7/7 0:43
  7. @File :sort_by_disk.py
  8. '''
  9. import matplotlib
  10. matplotlib.use('Agg')
  11. import pandas as pd
  12. from configparser import ConfigParser
  13. import time
  14. import libs.save_result
  15. cf = ConfigParser()
  16. config_path = "../conf/config.ini"
  17. section_name = "data_file_name"
  18. cf.read(config_path)
  19. app_interference = cf.get(section_name, "app_interference")
  20. app_resources = cf.get(section_name, "app_resources")
  21. instance = cf.get(section_name, "instance")
  22. # app
  23. df1 = pd.read_csv(app_resources, encoding="utf-8")
  24. # instance
  25. df3 = pd.read_csv(instance)
  26. df3["cpu"] = df3["cpu"].astype("float")
  27. df3["disk"] = df3["disk"].astype("float")
  28. df3["mem"] = df3["mem"].astype("float")
  29. df3["M"] = df3["M"].astype("float")
  30. df3["P"] = df3["P"].astype("float")
  31. df3["PM"] = df3["PM"].astype("float")
  32. df3["isdeploy"] = False
  33. # machine
  34. # 其实就两类,所以就不需要导入数据了。
  35. # 限制表
  36. df4 = pd.read_csv(app_interference, header=None,
  37. names=list(["appid1", "appid2", "max_interference"]), encoding="utf-8")
  38. result = pd.DataFrame(columns=list(["instanceid", "machineid"]), data=list())
  39. tem_pre_disk = tem_pre_mem = tem_pre_cpu = tem_pre_P = tem_pre_M = tem_pre_PM = 0
  40. tem_disk = tem_mem = tem_cpu = tem_P = tem_M = tem_PM = 0
  41. tmp_stand_cpu1 = 32
  42. tmp_stand_mem1 = 64
  43. tmp_stand_disk1 = 600
  44. tmp_stand_cpu2 = 92
  45. tmp_stand_mem2 = 288
  46. tmp_stand_disk2 = 600
  47. tmp_stand_P = 7
  48. tmp_stand_M1 = 3
  49. tmp_stand_M2 = 7
  50. tmp_stand_PM1 = 7
  51. tmp_stand_PM2 = 9
  52. machine_count = 0 # 3000小机器,3000大机器。所以在小机器用完换大机器
  53. j = 1 # j表示主机序号,从1-3000,3001到6000
  54. is_deploy = False # 主机j是否部署了instance
  55. deploy_list = list() # 主机j部署的instanceid实例
  56. # 各app之间的限制
  57. def restrictApps(instance, deploy_list):
  58. len_list = len(deploy_list)
  59. if len_list == 0:
  60. return True
  61. else:
  62. ct = pd.Series(deploy_list).value_counts()
  63. for k, v in ct.items():
  64. tmp = df4.loc[(df4["appid1"] == k) & (df4["appid2"] == instance)]
  65. row, col = tmp.shape
  66. if row > 0:
  67. if ct[instance] + 1 > tmp["max_interference"]:
  68. return False
  69. else:
  70. # 在限制表中找不到限制条件
  71. return True
  72. # 执行部署方案
  73. def deploy():
  74. global j, is_deploy, tem_mem, tem_cpu, tem_disk, tem_P, tem_M, tem_PM, tem_pre_disk, tem_pre_mem, \
  75. tem_pre_cpu, tem_pre_P, tem_pre_M, tem_pre_PM, result, df3, deploy_list
  76. print("------------开始部署啦--------------")
  77. start = time.time()
  78. row, column = df3.shape
  79. while row > 0:
  80. deployInstance()
  81. # 整个instace都遍历了,第j主机无法再放入一个,所以添加j+1主机
  82. df3 = df3[df3["isdeploy"] == False]
  83. row, column = df3.shape
  84. df3 = df3.reset_index(drop=True)
  85. j = j + 1
  86. # j++之后表示新建主机,所以新主机没有部署任何实例,为false,然后初始化所有其他参数
  87. is_deploy = False
  88. tem_pre_disk = tem_pre_mem = tem_pre_cpu = tem_pre_P = tem_pre_M = tem_pre_PM = 0
  89. tem_disk = tem_mem = tem_cpu = tem_P = tem_M = tem_PM = 0
  90. deploy_list = list()
  91. # 部署完事
  92. print("------------部署完啦--------------")
  93. end = time.time()
  94. print("总共耗时:", end - start, "秒")
  95. print("总共需要主机数:", j)
  96. print("部署方案前几条示意:", result.head())
  97. libs.save_result.save_result(result)
  98. def deployInstance():
  99. '''
  100. 根据限制部署实例到主机上
  101. :param row: 根据剩余的instance数量循环
  102. :param j: 第j台主机
  103. :return: 暂未定返回值,None
  104. '''
  105. global is_deploy, tem_mem, tem_cpu, tem_disk, tem_P, tem_M, tem_PM, tem_pre_disk, tem_pre_mem, tem_pre_cpu, tem_pre_P, tem_pre_M, tem_pre_PM, result, j, df3, deploy_list
  106. for row in df3.itertuples():
  107. i = row.Index
  108. tem_pre_cpu = tem_cpu + row.cpu
  109. tem_pre_mem = tem_mem + row.mem
  110. tem_pre_disk = tem_disk + row.disk # 当前磁盘消耗
  111. tem_pre_P = tem_P + row.P
  112. tem_pre_M = tem_M + row.M
  113. tem_pre_PM = tem_PM + row.PM
  114. # if 满足限制表条件,则把当前实例部署到这台主机上。
  115. if j < 3000: # 使用小主机
  116. if is_deploy == True:
  117. if tem_pre_disk < tmp_stand_disk1: # 磁盘够
  118. if restrictApps(instance=row.instanceid, deploy_list=deploy_list):
  119. if tem_pre_mem < tmp_stand_mem1: # 内存够
  120. if tem_pre_cpu < tmp_stand_cpu1: # CPU够
  121. if tem_pre_M < tmp_stand_M1:
  122. if tem_pre_P < tmp_stand_P:
  123. if tem_pre_PM < tmp_stand_PM1:
  124. # 条件都满足,则把instance放入主机,同时df3表中去掉这个部署好的一行
  125. result = result.append(pd.DataFrame(
  126. [{"instanceid": row.instanceid,
  127. "machineid": "machine_" + str(j)}]))
  128. tem_disk = tem_disk + row.disk
  129. tem_mem = tem_mem + row.mem
  130. tem_cpu = tem_cpu + row.cpu
  131. tem_P = tem_P + row.P
  132. tem_M = tem_M + row.M
  133. tem_PM = tem_PM + row.PM
  134. df3.loc[i, "isdeploy"] = True
  135. deploy_list.append(row.instanceid)
  136. else:
  137. # 主机j没有部署实例,则先部署一个
  138. result = result.append(
  139. pd.DataFrame([{"instanceid": row.instanceid, "machineid": "machine_" + str(j)}]))
  140. tem_disk = tem_disk + row.disk
  141. tem_mem = tem_mem + row.mem
  142. tem_cpu = tem_cpu + row.cpu
  143. tem_P = tem_P + row.P
  144. tem_M = tem_M + row.M
  145. tem_PM = tem_PM + row.PM
  146. df3.loc[i, "isdeploy"] = True
  147. deploy_list.append(row.instanceid)
  148. # df3["isdeploy"][i] = True
  149. is_deploy = True
  150. else: # 使用大主机
  151. if is_deploy == True:
  152. if tem_pre_disk < tmp_stand_disk2: # 磁盘够
  153. if restrictApps(instance=row.instanceid, deploy_list=deploy_list):
  154. if tem_pre_mem < tmp_stand_mem2: # 内存够
  155. if tem_pre_cpu < tmp_stand_cpu2: # CPU够
  156. if tem_pre_M < tmp_stand_M2:
  157. if tem_pre_P < tmp_stand_P:
  158. if tem_pre_PM < tmp_stand_PM2:
  159. # 条件都满足,则把instance放入主机
  160. result = result.append(pd.DataFrame(
  161. [{"instanceid": row.instanceid,
  162. "machineid": "machine_" + str(j)}]))
  163. tem_disk = tem_disk + row.disk
  164. tem_mem = tem_mem + row.mem
  165. tem_cpu = tem_cpu + row.cpu
  166. tem_P = tem_P + row.P
  167. tem_M = tem_M + row.M
  168. tem_PM = tem_PM + row.PM
  169. df3.loc[i, "isdeploy"] = True
  170. deploy_list.append(row.instanceid)
  171. else:
  172. # 主机j没有部署实例,则先部署一个
  173. result = result.append(
  174. pd.DataFrame([{"instanceid": row.instanceid, "machineid": "machine_" + str(j)}]))
  175. tem_disk = tem_disk + row.disk
  176. tem_mem = tem_mem + row.mem
  177. tem_cpu = tem_cpu + row.cpu
  178. tem_P = tem_P + row.P
  179. tem_M = tem_M + row.M
  180. tem_PM = tem_PM + row.PM
  181. df3.loc[i, "isdeploy"] = True
  182. deploy_list.append(row.instanceid)
  183. is_deploy = True
  184. deploy()