|
@@ -0,0 +1,195 @@
|
|
|
|
+# code is from https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/model.py
|
|
|
|
+import math
|
|
|
|
+from functools import partial
|
|
|
|
+
|
|
|
|
+import torch
|
|
|
|
+import torch.nn as nn
|
|
|
|
+import torch.nn.functional as F
|
|
|
|
+from torch.autograd import Variable
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def conv3x3x3(in_planes, out_planes, stride=1):
|
|
|
|
+ # 3x3x3 convolution with padding
|
|
|
|
+ return nn.Conv3d(
|
|
|
|
+ in_planes,
|
|
|
|
+ out_planes,
|
|
|
|
+ kernel_size=3,
|
|
|
|
+ stride=stride,
|
|
|
|
+ padding=1,
|
|
|
|
+ bias=False)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def downsample_basic_block(x, planes, stride):
|
|
|
|
+ out = F.avg_pool3d(x, kernel_size=1, stride=stride)
|
|
|
|
+ zero_pads = torch.Tensor(
|
|
|
|
+ out.size(0), planes - out.size(1), out.size(2), out.size(3),
|
|
|
|
+ out.size(4)).zero_()
|
|
|
|
+ if isinstance(out.data, torch.cuda.FloatTensor):
|
|
|
|
+ zero_pads = zero_pads.cuda()
|
|
|
|
+
|
|
|
|
+ out = Variable(torch.cat([out.data, zero_pads], dim=1))
|
|
|
|
+
|
|
|
|
+ return out
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class BasicBlock(nn.Module):
|
|
|
|
+ expansion = 1
|
|
|
|
+
|
|
|
|
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
|
|
+ super(BasicBlock, self).__init__()
|
|
|
|
+ self.conv1 = conv3x3x3(inplanes, planes, stride)
|
|
|
|
+ self.bn1 = nn.BatchNorm3d(planes)
|
|
|
|
+ self.relu = nn.ReLU(inplace=True)
|
|
|
|
+ self.conv2 = conv3x3x3(planes, planes)
|
|
|
|
+ self.bn2 = nn.BatchNorm3d(planes)
|
|
|
|
+ self.downsample = downsample
|
|
|
|
+ self.stride = stride
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ residual = x
|
|
|
|
+
|
|
|
|
+ out = self.conv1(x)
|
|
|
|
+ out = self.bn1(out)
|
|
|
|
+ out = self.relu(out)
|
|
|
|
+
|
|
|
|
+ out = self.conv2(out)
|
|
|
|
+ out = self.bn2(out)
|
|
|
|
+
|
|
|
|
+ if self.downsample is not None:
|
|
|
|
+ residual = self.downsample(x)
|
|
|
|
+
|
|
|
|
+ out += residual
|
|
|
|
+ out = self.relu(out)
|
|
|
|
+
|
|
|
|
+ return out
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class Bottleneck(nn.Module):
|
|
|
|
+ expansion = 4
|
|
|
|
+
|
|
|
|
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
|
|
+ super(Bottleneck, self).__init__()
|
|
|
|
+ self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
|
|
|
|
+ self.bn1 = nn.BatchNorm3d(planes)
|
|
|
|
+ self.conv2 = nn.Conv3d(
|
|
|
|
+ planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
|
|
+ self.bn2 = nn.BatchNorm3d(planes)
|
|
|
|
+ self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
|
|
|
|
+ self.bn3 = nn.BatchNorm3d(planes * 4)
|
|
|
|
+ self.relu = nn.ReLU(inplace=True)
|
|
|
|
+ self.downsample = downsample
|
|
|
|
+ self.stride = stride
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ residual = x
|
|
|
|
+
|
|
|
|
+ out = self.conv1(x)
|
|
|
|
+ out = self.bn1(out)
|
|
|
|
+ out = self.relu(out)
|
|
|
|
+
|
|
|
|
+ out = self.conv2(out)
|
|
|
|
+ out = self.bn2(out)
|
|
|
|
+ out = self.relu(out)
|
|
|
|
+
|
|
|
|
+ out = self.conv3(out)
|
|
|
|
+ out = self.bn3(out)
|
|
|
|
+
|
|
|
|
+ if self.downsample is not None:
|
|
|
|
+ residual = self.downsample(x)
|
|
|
|
+
|
|
|
|
+ out += residual
|
|
|
|
+ out = self.relu(out)
|
|
|
|
+
|
|
|
|
+ return out
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class ResNet(nn.Module):
|
|
|
|
+
|
|
|
|
+ def __init__(self,
|
|
|
|
+ block,
|
|
|
|
+ layers,
|
|
|
|
+ sample_size,
|
|
|
|
+ sample_duration,
|
|
|
|
+ shortcut_type='B',
|
|
|
|
+ num_classes=400):
|
|
|
|
+ self.inplanes = 64
|
|
|
|
+ super(ResNet, self).__init__()
|
|
|
|
+ self.conv1 = nn.Conv3d(
|
|
|
|
+ 3,
|
|
|
|
+ 64,
|
|
|
|
+ kernel_size=7,
|
|
|
|
+ stride=(1, 2, 2),
|
|
|
|
+ padding=(3, 3, 3),
|
|
|
|
+ bias=False)
|
|
|
|
+ self.bn1 = nn.BatchNorm3d(64)
|
|
|
|
+ self.relu = nn.ReLU(inplace=True)
|
|
|
|
+ self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
|
|
|
|
+ self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
|
|
|
|
+ self.layer2 = self._make_layer(
|
|
|
|
+ block, 128, layers[1], shortcut_type, stride=2)
|
|
|
|
+ self.layer3 = self._make_layer(
|
|
|
|
+ block, 256, layers[2], shortcut_type, stride=2)
|
|
|
|
+ self.layer4 = self._make_layer(
|
|
|
|
+ block, 512, layers[3], shortcut_type, stride=2)
|
|
|
|
+ last_duration = int(math.ceil(sample_duration / 16))
|
|
|
|
+ last_size = int(math.ceil(sample_size / 32))
|
|
|
|
+ self.avgpool = nn.AvgPool3d(
|
|
|
|
+ (last_duration, last_size, last_size), stride=1)
|
|
|
|
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
|
|
|
|
+
|
|
|
|
+ for m in self.modules():
|
|
|
|
+ if isinstance(m, nn.Conv3d):
|
|
|
|
+ m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
|
|
|
|
+ elif isinstance(m, nn.BatchNorm3d):
|
|
|
|
+ m.weight.data.fill_(1)
|
|
|
|
+ m.bias.data.zero_()
|
|
|
|
+
|
|
|
|
+ def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
|
|
|
|
+ downsample = None
|
|
|
|
+ if stride != 1 or self.inplanes != planes * block.expansion:
|
|
|
|
+ if shortcut_type == 'A':
|
|
|
|
+ downsample = partial(
|
|
|
|
+ downsample_basic_block,
|
|
|
|
+ planes=planes * block.expansion,
|
|
|
|
+ stride=stride)
|
|
|
|
+ else:
|
|
|
|
+ downsample = nn.Sequential(
|
|
|
|
+ nn.Conv3d(
|
|
|
|
+ self.inplanes,
|
|
|
|
+ planes * block.expansion,
|
|
|
|
+ kernel_size=1,
|
|
|
|
+ stride=stride,
|
|
|
|
+ bias=False), nn.BatchNorm3d(planes * block.expansion))
|
|
|
|
+a
|
|
|
|
+ layers = []
|
|
|
|
+ layers.append(block(self.inplanes, planes, stride, downsample))
|
|
|
|
+ self.inplanes = planes * block.expansion
|
|
|
|
+ for i in range(1, blocks):
|
|
|
|
+ layers.append(block(self.inplanes, planes))
|
|
|
|
+
|
|
|
|
+ return nn.Sequential(*layers)
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ x = self.conv1(x)
|
|
|
|
+ x = self.bn1(x)
|
|
|
|
+ x = self.relu(x)
|
|
|
|
+ x = self.maxpool(x)
|
|
|
|
+
|
|
|
|
+ x = self.layer1(x)
|
|
|
|
+ x = self.layer2(x)
|
|
|
|
+ x = self.layer3(x)
|
|
|
|
+ x = self.layer4(x)
|
|
|
|
+
|
|
|
|
+ x = self.avgpool(x)
|
|
|
|
+
|
|
|
|
+ x = x.view(x.size(0), -1)
|
|
|
|
+ x = self.fc(x)
|
|
|
|
+
|
|
|
|
+ return x
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def resnet34(**kwargs):
|
|
|
|
+ """Constructs a ResNet-34 model.
|
|
|
|
+ """
|
|
|
|
+ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
|
|
|
+ return model
|