|
@@ -0,0 +1,261 @@
|
|
|
|
+{
|
|
|
|
+ "cells": [
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": null,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "%load_ext autoreload\n",
|
|
|
|
+ "%autoreload 2"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 48,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "import os\n",
|
|
|
|
+ "import glob\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "from experiments import ExperimentRunner\n",
|
|
|
|
+ "import params"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 49,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "ex = ExperimentRunner(params.experiment1, n_jobs=1)"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": null,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "name": "stderr",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "Running param set: {'data_path_base': '/Users/aziai/Downloads/vtest_new2', 'conv_model_name': 'vgg', 'num_epochs': 10, 'feature_extract': False, 'batch_size': 64, 'lr': 0.001, 'use_vggish': False, 'momentum': 0.9}\n",
|
|
|
|
+ "Downloading: \"https://download.pytorch.org/models/vgg11_bn-6002323d.pth\" to /Users/aziai/.cache/torch/checkpoints/vgg11_bn-6002323d.pth\n",
|
|
|
|
+ "100%|██████████| 531503671/531503671 [00:40<00:00, 13079409.73it/s]\n"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "name": "stdout",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "Updating ALL params\n",
|
|
|
|
+ "Epoch 0/9\n",
|
|
|
|
+ "----------\n",
|
|
|
|
+ "train Loss: 1.0483 F1: 0.2951 Acc: 0.4557\n",
|
|
|
|
+ "val Loss: 0.5709 F1: 0.8189 Acc: 0.7294\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "Epoch 1/9\n",
|
|
|
|
+ "----------\n",
|
|
|
|
+ "train Loss: 0.5769 F1: 0.7872 Acc: 0.7468\n",
|
|
|
|
+ "val Loss: 0.3201 F1: 0.9353 Acc: 0.8941\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "Epoch 2/9\n",
|
|
|
|
+ "----------\n",
|
|
|
|
+ "train Loss: 0.3647 F1: 0.8247 Acc: 0.7848\n",
|
|
|
|
+ "val Loss: 0.4309 F1: 0.8333 Acc: 0.7647\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "Epoch 3/9\n",
|
|
|
|
+ "----------\n",
|
|
|
|
+ "train Loss: 0.2243 F1: 0.8571 Acc: 0.8608\n",
|
|
|
|
+ "val Loss: 0.7989 F1: 0.6796 Acc: 0.6118\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "Epoch 4/9\n",
|
|
|
|
+ "----------\n",
|
|
|
|
+ "train Loss: 0.1799 F1: 0.9231 Acc: 0.9241\n",
|
|
|
|
+ "val Loss: 0.8629 F1: 0.7407 Acc: 0.6706\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "Epoch 5/9\n",
|
|
|
|
+ "----------\n"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "ex.run()"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 29,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "import pandas as pd"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 45,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "paths = glob.glob('results/*.csv') # * means all if need specific format then *.csv\n",
|
|
|
|
+ "latest = max(paths, key=os.path.getctime)\n",
|
|
|
|
+ "df = pd.read_csv(latest)"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 46,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "data": {
|
|
|
|
+ "text/html": [
|
|
|
|
+ "<div>\n",
|
|
|
|
+ "<style scoped>\n",
|
|
|
|
+ " .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
+ " vertical-align: middle;\n",
|
|
|
|
+ " }\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " .dataframe tbody tr th {\n",
|
|
|
|
+ " vertical-align: top;\n",
|
|
|
|
+ " }\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " .dataframe thead th {\n",
|
|
|
|
+ " text-align: right;\n",
|
|
|
|
+ " }\n",
|
|
|
|
+ "</style>\n",
|
|
|
|
+ "<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
+ " <thead>\n",
|
|
|
|
+ " <tr style=\"text-align: right;\">\n",
|
|
|
|
+ " <th></th>\n",
|
|
|
|
+ " <th>batch_size</th>\n",
|
|
|
|
+ " <th>conv_model_name</th>\n",
|
|
|
|
+ " <th>data_path_base</th>\n",
|
|
|
|
+ " <th>experiment_uuid</th>\n",
|
|
|
|
+ " <th>feature_extract</th>\n",
|
|
|
|
+ " <th>lr</th>\n",
|
|
|
|
+ " <th>momentum</th>\n",
|
|
|
|
+ " <th>num_epochs</th>\n",
|
|
|
|
+ " <th>runner_uuid</th>\n",
|
|
|
|
+ " <th>use_vggish</th>\n",
|
|
|
|
+ " <th>val_acc</th>\n",
|
|
|
|
+ " <th>val_f1</th>\n",
|
|
|
|
+ " </tr>\n",
|
|
|
|
+ " </thead>\n",
|
|
|
|
+ " <tbody>\n",
|
|
|
|
+ " <tr>\n",
|
|
|
|
+ " <th>1</th>\n",
|
|
|
|
+ " <td>64</td>\n",
|
|
|
|
+ " <td>resnet</td>\n",
|
|
|
|
+ " <td>/Users/aziai/Downloads/vtest_new2</td>\n",
|
|
|
|
+ " <td>20191402191416</td>\n",
|
|
|
|
+ " <td>False</td>\n",
|
|
|
|
+ " <td>0.001</td>\n",
|
|
|
|
+ " <td>0.9</td>\n",
|
|
|
|
+ " <td>10</td>\n",
|
|
|
|
+ " <td>b3290017112d2116e4bdbb9c8dbf15a8e75adacb942afb...</td>\n",
|
|
|
|
+ " <td>True</td>\n",
|
|
|
|
+ " <td>0.894118</td>\n",
|
|
|
|
+ " <td>0.935252</td>\n",
|
|
|
|
+ " </tr>\n",
|
|
|
|
+ " <tr>\n",
|
|
|
|
+ " <th>0</th>\n",
|
|
|
|
+ " <td>64</td>\n",
|
|
|
|
+ " <td>resnet</td>\n",
|
|
|
|
+ " <td>/Users/aziai/Downloads/vtest_new2</td>\n",
|
|
|
|
+ " <td>20191402191416</td>\n",
|
|
|
|
+ " <td>False</td>\n",
|
|
|
|
+ " <td>0.001</td>\n",
|
|
|
|
+ " <td>0.9</td>\n",
|
|
|
|
+ " <td>10</td>\n",
|
|
|
|
+ " <td>0e57debc92afdd0dc7a209584b4d97860c9dba98f3aed4...</td>\n",
|
|
|
|
+ " <td>False</td>\n",
|
|
|
|
+ " <td>0.823529</td>\n",
|
|
|
|
+ " <td>0.878049</td>\n",
|
|
|
|
+ " </tr>\n",
|
|
|
|
+ " <tr>\n",
|
|
|
|
+ " <th>3</th>\n",
|
|
|
|
+ " <td>64</td>\n",
|
|
|
|
+ " <td>resnet</td>\n",
|
|
|
|
+ " <td>/Users/aziai/Downloads/vtest_new2</td>\n",
|
|
|
|
+ " <td>20191402191416</td>\n",
|
|
|
|
+ " <td>True</td>\n",
|
|
|
|
+ " <td>0.001</td>\n",
|
|
|
|
+ " <td>0.9</td>\n",
|
|
|
|
+ " <td>10</td>\n",
|
|
|
|
+ " <td>8e644bc291a463725bf0bcb11825a196383a4860eeecd7...</td>\n",
|
|
|
|
+ " <td>True</td>\n",
|
|
|
|
+ " <td>0.729412</td>\n",
|
|
|
|
+ " <td>0.824427</td>\n",
|
|
|
|
+ " </tr>\n",
|
|
|
|
+ " <tr>\n",
|
|
|
|
+ " <th>2</th>\n",
|
|
|
|
+ " <td>64</td>\n",
|
|
|
|
+ " <td>resnet</td>\n",
|
|
|
|
+ " <td>/Users/aziai/Downloads/vtest_new2</td>\n",
|
|
|
|
+ " <td>20191402191416</td>\n",
|
|
|
|
+ " <td>True</td>\n",
|
|
|
|
+ " <td>0.001</td>\n",
|
|
|
|
+ " <td>0.9</td>\n",
|
|
|
|
+ " <td>10</td>\n",
|
|
|
|
+ " <td>e07e5119b07164f06098d1adba9e4c43ad0344716a0746...</td>\n",
|
|
|
|
+ " <td>False</td>\n",
|
|
|
|
+ " <td>0.564706</td>\n",
|
|
|
|
+ " <td>0.626263</td>\n",
|
|
|
|
+ " </tr>\n",
|
|
|
|
+ " </tbody>\n",
|
|
|
|
+ "</table>\n",
|
|
|
|
+ "</div>"
|
|
|
|
+ ],
|
|
|
|
+ "text/plain": [
|
|
|
|
+ " batch_size conv_model_name data_path_base ... use_vggish val_acc val_f1\n",
|
|
|
|
+ "1 64 resnet /Users/aziai/Downloads/vtest_new2 ... True 0.894118 0.935252\n",
|
|
|
|
+ "0 64 resnet /Users/aziai/Downloads/vtest_new2 ... False 0.823529 0.878049\n",
|
|
|
|
+ "3 64 resnet /Users/aziai/Downloads/vtest_new2 ... True 0.729412 0.824427\n",
|
|
|
|
+ "2 64 resnet /Users/aziai/Downloads/vtest_new2 ... False 0.564706 0.626263\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "[4 rows x 12 columns]"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ "execution_count": 46,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "output_type": "execute_result"
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "df.sort_values(by='val_f1', ascending=False)"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": null,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": []
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "metadata": {
|
|
|
|
+ "kernelspec": {
|
|
|
|
+ "display_name": "Python 3",
|
|
|
|
+ "language": "python",
|
|
|
|
+ "name": "python3"
|
|
|
|
+ },
|
|
|
|
+ "language_info": {
|
|
|
|
+ "codemirror_mode": {
|
|
|
|
+ "name": "ipython",
|
|
|
|
+ "version": 3
|
|
|
|
+ },
|
|
|
|
+ "file_extension": ".py",
|
|
|
|
+ "mimetype": "text/x-python",
|
|
|
|
+ "name": "python",
|
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
|
+ "pygments_lexer": "ipython3",
|
|
|
|
+ "version": "3.7.2"
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "nbformat": 4,
|
|
|
|
+ "nbformat_minor": 2
|
|
|
|
+}
|