# Kissing Detector Detect kissing scenes in a movie using both audio and video features. Project for [Stanford CS231N](http://cs231n.stanford.edu) ## Running the code Use Python 3.6+ ```bash python3 experiments.py ``` this will run the experiments in `params.py` specified by the `experiments` dictionary. ## Build dataset The following will build the dataset for training. You need to provide path to video segments. ```python from pipeline import BuildDataset videos_and_labels = [ # (file name in base_path, label) where label is 1 for kissing and 0 for not kissing ('movies_casino_royale_2006_kissing_1.mp4', 1), ('movies_casino_royale_2006_kissing_2.mp4', 1), ('movies_casino_royale_2006_kissing_3.mp4', 1), ('movies_casino_royale_2006_not_1.mp4', 0), ('movies_casino_royale_2006_not_2.mp4', 0), ('movies_casino_royale_2006_not_3.mp4', 0), ('movies_goldeneye_1995_kissing_1.mp4', 1), ('movies_goldeneye_1995_kissing_2.mp4', 1), ('movies_goldeneye_1995_kissing_3.mp4', 1), ('movies_goldeneye_1995_not_1.mp4', 0), ('movies_goldeneye_1995_not_2.mp4', 0), ('movies_goldeneye_1995_not_3.mp4', 0), ] builder = BuildDataset(base_path='path/to/movies', videos_and_labels=videos_and_labels, output_path='/path/to/output', test_size=1 / 3) # set aside 1 / 3 of data for validation builder.build_dataset() ``` ## Heavily used the following resources: - [Video Classification Using 3D ResNet](https://github.com/kenshohara/video-classification-3d-cnn-pytorch) - [CS231N assignment 3](http://cs231n.github.io/assignments2019/assignment3/)