{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "import os\n", "import glob\n", "\n", "from experiments import ExperimentRunner\n", "import params" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "ex = ExperimentRunner(params.experiment1, n_jobs=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Running param set: {'data_path_base': '/Users/aziai/Downloads/vtest_new2', 'conv_model_name': 'vgg', 'num_epochs': 10, 'feature_extract': False, 'batch_size': 64, 'lr': 0.001, 'use_vggish': False, 'momentum': 0.9}\n", "Downloading: \"https://download.pytorch.org/models/vgg11_bn-6002323d.pth\" to /Users/aziai/.cache/torch/checkpoints/vgg11_bn-6002323d.pth\n", "100%|██████████| 531503671/531503671 [00:40<00:00, 13079409.73it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Updating ALL params\n", "Epoch 0/9\n", "----------\n", "train Loss: 1.0483 F1: 0.2951 Acc: 0.4557\n", "val Loss: 0.5709 F1: 0.8189 Acc: 0.7294\n", "\n", "Epoch 1/9\n", "----------\n", "train Loss: 0.5769 F1: 0.7872 Acc: 0.7468\n", "val Loss: 0.3201 F1: 0.9353 Acc: 0.8941\n", "\n", "Epoch 2/9\n", "----------\n", "train Loss: 0.3647 F1: 0.8247 Acc: 0.7848\n", "val Loss: 0.4309 F1: 0.8333 Acc: 0.7647\n", "\n", "Epoch 3/9\n", "----------\n", "train Loss: 0.2243 F1: 0.8571 Acc: 0.8608\n", "val Loss: 0.7989 F1: 0.6796 Acc: 0.6118\n", "\n", "Epoch 4/9\n", "----------\n", "train Loss: 0.1799 F1: 0.9231 Acc: 0.9241\n", "val Loss: 0.8629 F1: 0.7407 Acc: 0.6706\n", "\n", "Epoch 5/9\n", "----------\n" ] } ], "source": [ "ex.run()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "paths = glob.glob('results/*.csv') # * means all if need specific format then *.csv\n", "latest = max(paths, key=os.path.getctime)\n", "df = pd.read_csv(latest)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | batch_size | \n", "conv_model_name | \n", "data_path_base | \n", "experiment_uuid | \n", "feature_extract | \n", "lr | \n", "momentum | \n", "num_epochs | \n", "runner_uuid | \n", "use_vggish | \n", "val_acc | \n", "val_f1 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | \n", "64 | \n", "resnet | \n", "/Users/aziai/Downloads/vtest_new2 | \n", "20191402191416 | \n", "False | \n", "0.001 | \n", "0.9 | \n", "10 | \n", "b3290017112d2116e4bdbb9c8dbf15a8e75adacb942afb... | \n", "True | \n", "0.894118 | \n", "0.935252 | \n", "
0 | \n", "64 | \n", "resnet | \n", "/Users/aziai/Downloads/vtest_new2 | \n", "20191402191416 | \n", "False | \n", "0.001 | \n", "0.9 | \n", "10 | \n", "0e57debc92afdd0dc7a209584b4d97860c9dba98f3aed4... | \n", "False | \n", "0.823529 | \n", "0.878049 | \n", "
3 | \n", "64 | \n", "resnet | \n", "/Users/aziai/Downloads/vtest_new2 | \n", "20191402191416 | \n", "True | \n", "0.001 | \n", "0.9 | \n", "10 | \n", "8e644bc291a463725bf0bcb11825a196383a4860eeecd7... | \n", "True | \n", "0.729412 | \n", "0.824427 | \n", "
2 | \n", "64 | \n", "resnet | \n", "/Users/aziai/Downloads/vtest_new2 | \n", "20191402191416 | \n", "True | \n", "0.001 | \n", "0.9 | \n", "10 | \n", "e07e5119b07164f06098d1adba9e4c43ad0344716a0746... | \n", "False | \n", "0.564706 | \n", "0.626263 | \n", "