视频亲嘴片段识别,精彩片段识别。 https://git.yoqi.me/lyq/PredictWonderfulTV
![]() |
5 years ago | |
---|---|---|
dev | 5 years ago | |
examples | 5 years ago | |
.gitignore | 6 years ago | |
LICENSE | 6 years ago | |
README.md | 5 years ago | |
conv.py | 5 years ago | |
conv3d.py | 5 years ago | |
data.py | 5 years ago | |
experiments.py | 5 years ago | |
kissing_detector.py | 5 years ago | |
mel_features.py | 6 years ago | |
params.py | 5 years ago | |
pipeline.py | 5 years ago | |
qualitative.py | 5 years ago | |
requirements.txt | 5 years ago | |
segmentor.py | 5 years ago | |
test_segmentor.py | 5 years ago | |
train.py | 5 years ago | |
utils.py | 5 years ago | |
vggish.py | 5 years ago | |
vggish_input.py | 6 years ago | |
vggish_params.py | 6 years ago |
Detect kissing scenes in a movie using both audio and video features.
Project for Stanford CS231N
Use Python 3.6+
python3 experiments.py
This is a PyTorch project. Look at requirements.txt
for more details.
this will run the experiments in params.py
specified by the experiments
dictionary.
The following will build the dataset for training. You need to provide path to video segments.
from pipeline import BuildDataset
videos_and_labels = [
# (file name in base_path, label) where label is 1 for kissing and 0 for not kissing
('movies_casino_royale_2006_kissing_1.mp4', 1),
('movies_casino_royale_2006_kissing_2.mp4', 1),
('movies_casino_royale_2006_kissing_3.mp4', 1),
('movies_casino_royale_2006_not_1.mp4', 0),
('movies_casino_royale_2006_not_2.mp4', 0),
('movies_casino_royale_2006_not_3.mp4', 0),
('movies_goldeneye_1995_kissing_1.mp4', 1),
('movies_goldeneye_1995_kissing_2.mp4', 1),
('movies_goldeneye_1995_kissing_3.mp4', 1),
('movies_goldeneye_1995_not_1.mp4', 0),
('movies_goldeneye_1995_not_2.mp4', 0),
('movies_goldeneye_1995_not_3.mp4', 0),
]
builder = BuildDataset(base_path='path/to/movies',
videos_and_labels=videos_and_labels,
output_path='/path/to/output',
test_size=1 / 3) # set aside 1 / 3 of data for validation
builder.build_dataset()
from segmentor import Segmentor
import utils
# download model.pkl from https://drive.google.com/file/d/1RlvvdInTXtJikGv_ZbHcKoblCypN1Z0A/view?usp=sharing
# or train your own
model = utils.unpickle('model.pkl') # pickled PyTorch model
s = Segmentor(model, min_frames=10, threshold=0.7)
# For YouTube clip Hot Summer Nights - Kiss Scene (Maika Monroe and Timothee Chalamet)
# at https://www.youtube.com/watch?v=GG5HmLQ_Fx0
# v=XXX is the YouTube ID, pass that here
s.visualize_segments_youtube('GG5HmLQ_Fx0')
# alternatively you can provide a path to a local mp4 file
s.visualize_segments('path/to/file.mp4')
See examples in examples/detector.ipynb.