123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # code is from https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/model.py
- import math
- from functools import partial
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.autograd import Variable
- def conv3x3x3(in_planes, out_planes, stride=1):
- # 3x3x3 convolution with padding
- return nn.Conv3d(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=1,
- bias=False)
- def downsample_basic_block(x, planes, stride):
- out = F.avg_pool3d(x, kernel_size=1, stride=stride)
- zero_pads = torch.Tensor(
- out.size(0), planes - out.size(1), out.size(2), out.size(3),
- out.size(4)).zero_()
- if isinstance(out.data, torch.cuda.FloatTensor):
- zero_pads = zero_pads.cuda()
- out = Variable(torch.cat([out.data, zero_pads], dim=1))
- return out
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3x3(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm3d(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3x3(planes, planes)
- self.bn2 = nn.BatchNorm3d(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm3d(planes)
- self.conv2 = nn.Conv3d(
- planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn2 = nn.BatchNorm3d(planes)
- self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm3d(planes * 4)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet(nn.Module):
- def __init__(self,
- block,
- layers,
- sample_size,
- sample_duration,
- shortcut_type='B',
- num_classes=400):
- self.inplanes = 64
- super(ResNet, self).__init__()
- self.conv1 = nn.Conv3d(
- 3,
- 64,
- kernel_size=7,
- stride=(1, 2, 2),
- padding=(3, 3, 3),
- bias=False)
- self.bn1 = nn.BatchNorm3d(64)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
- self.layer2 = self._make_layer(
- block, 128, layers[1], shortcut_type, stride=2)
- self.layer3 = self._make_layer(
- block, 256, layers[2], shortcut_type, stride=2)
- self.layer4 = self._make_layer(
- block, 512, layers[3], shortcut_type, stride=2)
- last_duration = int(math.ceil(sample_duration / 16))
- last_size = int(math.ceil(sample_size / 32))
- self.avgpool = nn.AvgPool3d(
- (last_duration, last_size, last_size), stride=1)
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- for m in self.modules():
- if isinstance(m, nn.Conv3d):
- m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
- elif isinstance(m, nn.BatchNorm3d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- if shortcut_type == 'A':
- downsample = partial(
- downsample_basic_block,
- planes=planes * block.expansion,
- stride=stride)
- else:
- downsample = nn.Sequential(
- nn.Conv3d(
- self.inplanes,
- planes * block.expansion,
- kernel_size=1,
- stride=stride,
- bias=False), nn.BatchNorm3d(planes * block.expansion))
- layers = list()
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.avgpool(x)
- x = x.view(x.size(0), -1)
- x = self.fc(x)
- return x
- def resnet34(**kwargs):
- """Constructs a ResNet-34 model.
- """
- model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
- return model
|