1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- import numpy as np
- seed = 0
- n_jobs = 1
- data_path_base = 'vtest_new2'
- mean = np.array([0.485, 0.456, 0.406])
- std = np.array([0.229, 0.224, 0.225])
- # test end-to-end
- experiment_test = {
- 'data_path_base': {data_path_base},
- 'conv_model_name': {'resnet'},
- 'num_epochs': {10},
- 'feature_extract': {True},
- 'batch_size': {64},
- 'lr': {0.001},
- 'use_vggish': {True},
- 'momentum': {0.9}
- }
- experiment_test_3d = {
- 'data_path_base': {data_path_base},
- 'conv_model_name': {'resnet'},
- 'num_epochs': {10},
- 'feature_extract': {True},
- 'batch_size': {64},
- 'lr': {0.001},
- 'use_vggish': {True},
- 'momentum': {0.9},
- 'use_3d': {True}
- }
- experiments = {
- 'data_path_base': {data_path_base},
- 'conv_model_name': {'resnet', None}, # vgg
- 'num_epochs': {10},
- 'feature_extract': {True, False},
- 'batch_size': {64},
- 'lr': {1e-3, 1e-2},
- 'use_vggish': {False, True},
- 'momentum': {0.9, 0.95}
- }
|