train.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import copy
  2. import time
  3. from typing import List, Tuple, Optional
  4. import torch
  5. import torch.optim as optim
  6. from torch import nn
  7. from data import AudioVideo, AudioVideo3D
  8. from kissing_detector import KissingDetector, KissingDetector3DConv
  9. ExperimentResults = Tuple[Optional[nn.Module], List[float], List[float]]
  10. def _get_params_to_update(model: nn.Module,
  11. feature_extract: bool) -> List[nn.parameter.Parameter]:
  12. params_to_update = model.parameters()
  13. if feature_extract:
  14. print('Params to update')
  15. params_to_update = []
  16. for name, param in model.named_parameters():
  17. if param.requires_grad is True:
  18. params_to_update.append(param)
  19. print("*", name)
  20. else:
  21. print('Updating ALL params')
  22. return params_to_update
  23. def train_kd(data_path_base: str,
  24. conv_model_name: Optional[str],
  25. num_epochs: int,
  26. feature_extract: bool,
  27. batch_size: int,
  28. use_vggish: bool = True,
  29. num_workers: int = 4,
  30. shuffle: bool = True,
  31. lr: float = 0.001,
  32. momentum: float = 0.9,
  33. use_3d: bool = False) -> ExperimentResults:
  34. num_classes = 2
  35. try:
  36. if use_3d:
  37. kd = KissingDetector3DConv(num_classes, feature_extract, use_vggish)
  38. else:
  39. kd = KissingDetector(conv_model_name, num_classes, feature_extract, use_vggish=use_vggish)
  40. except ValueError:
  41. # if the combination is not valid
  42. return None, [-1.0], [-1.0]
  43. params_to_update = _get_params_to_update(kd, feature_extract)
  44. av = AudioVideo3D if use_3d else AudioVideo
  45. datasets = {set_: av(f'{data_path_base}/{set_}') for set_ in ['train', 'val']}
  46. dataloaders_dict = {x: torch.utils.data.DataLoader(datasets[x],
  47. batch_size=batch_size,
  48. shuffle=shuffle, num_workers=num_workers)
  49. for x in ['train', 'val']}
  50. optimizer_ft = optim.SGD(params_to_update, lr=lr, momentum=momentum)
  51. # Setup the loss fxn
  52. criterion = nn.CrossEntropyLoss()
  53. return train_model(kd,
  54. dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs,
  55. is_inception=(conv_model_name == "inception"))
  56. def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False):
  57. since = time.time()
  58. val_acc_history = []
  59. val_f1_history = []
  60. best_model_wts = copy.deepcopy(model.state_dict())
  61. best_acc = 0.0
  62. best_f1 = 0.0
  63. # Detect if we have a GPU available
  64. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  65. for epoch in range(num_epochs):
  66. print('Epoch {}/{}'.format(epoch, num_epochs - 1))
  67. print('-' * 10)
  68. # Each epoch has a training and validation phase
  69. for phase in ['train', 'val']:
  70. if phase == 'train':
  71. model.train() # Set model to training mode
  72. else:
  73. model.eval() # Set model to evaluate mode
  74. running_loss = 0.0
  75. running_corrects = 0
  76. running_tp = 0
  77. running_fp = 0
  78. running_fn = 0
  79. # Iterate over data.
  80. for a, v, labels in dataloaders[phase]:
  81. a = a.to(device)
  82. v = v.to(device)
  83. labels = labels.to(device)
  84. # zero the parameter gradients
  85. optimizer.zero_grad()
  86. # forward
  87. # track history if only in train
  88. with torch.set_grad_enabled(phase == 'train'):
  89. # Get model outputs and calculate loss
  90. # Special case for inception because in training it has an auxiliary output. In train
  91. # mode we calculate the loss by summing the final output and the auxiliary output
  92. # but in testing we only consider the final output.
  93. if is_inception and phase == 'train':
  94. # https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
  95. outputs, aux_outputs = model(a, v)
  96. loss1 = criterion(outputs, labels)
  97. loss2 = criterion(aux_outputs, labels)
  98. loss = loss1 + 0.4 * loss2
  99. else:
  100. outputs = model(a, v)
  101. loss = criterion(outputs, labels)
  102. _, preds = torch.max(outputs, 1)
  103. # backward + optimize only if in training phase
  104. if phase == 'train':
  105. loss.backward()
  106. optimizer.step()
  107. # statistics
  108. running_loss += loss.item() * a.size(0)
  109. running_corrects += torch.sum(preds == labels.data)
  110. running_tp += torch.sum((preds == labels.data)[labels.data == 1])
  111. running_fp += torch.sum((preds != labels.data)[labels.data == 1])
  112. running_fn += torch.sum((preds != labels.data)[labels.data == 0])
  113. epoch_loss = running_loss / len(dataloaders[phase].dataset)
  114. n = len(dataloaders[phase].dataset)
  115. epoch_acc = running_corrects.double() / n
  116. tp = running_tp.double()
  117. fp = running_fp.double()
  118. fn = running_fn.double()
  119. p = tp / (tp + fp)
  120. r = tp / (tp + fn)
  121. epoch_f1 = 2 * p * r / (p + r)
  122. print('{} Loss: {:.4f} F1: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_f1, epoch_acc))
  123. # deep copy the model
  124. if phase == 'val' and epoch_acc > best_acc:
  125. best_acc = epoch_acc
  126. if phase == 'val' and epoch_f1 > best_f1:
  127. best_f1 = epoch_f1
  128. best_model_wts = copy.deepcopy(model.state_dict())
  129. if phase == 'val':
  130. val_acc_history.append(float(epoch_acc))
  131. val_f1_history.append(float(epoch_f1))
  132. print()
  133. time_elapsed = time.time() - since
  134. print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  135. print('Best val F1 : {:4f}'.format(best_f1))
  136. print('Best val Acc : {:4f}'.format(best_acc))
  137. # load best model weights
  138. model.load_state_dict(best_model_wts)
  139. return model, val_acc_history, val_f1_history