|
@@ -0,0 +1,247 @@
|
|
|
|
+# Copyright 2015 Google Inc. All Rights Reserved.
|
|
|
|
+#
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
+#
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
+#
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
+# limitations under the License.
|
|
|
|
+# ==============================================================================
|
|
|
|
+
|
|
|
|
+"""Functions for downloading and reading MNIST data."""
|
|
|
|
+from __future__ import absolute_import
|
|
|
|
+from __future__ import division
|
|
|
|
+from __future__ import print_function
|
|
|
|
+#from mnist_demo import *
|
|
|
|
+
|
|
|
|
+import os
|
|
|
|
+
|
|
|
|
+import gzip
|
|
|
|
+import os
|
|
|
|
+import tempfile
|
|
|
|
+
|
|
|
|
+import numpy
|
|
|
|
+from six.moves import urllib
|
|
|
|
+from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
+import tensorflow as tf
|
|
|
|
+
|
|
|
|
+SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def maybe_download(filename, work_directory):
|
|
|
|
+ """Download the data from Yann's website, unless it's already here."""
|
|
|
|
+ filepath = os.path.join(work_directory, filename)
|
|
|
|
+ print(filepath)
|
|
|
|
+# if not tf.gfile.Exists(filepath):
|
|
|
|
+# with tempfile.NamedTemporaryFile() as tmpfile:
|
|
|
|
+# temp_file_name = tmpfile.name
|
|
|
|
+# urllib.request.urlretrieve(SOURCE_URL + filename, temp_file_name)
|
|
|
|
+# tf.gfile.Copy(temp_file_name, filepath)
|
|
|
|
+# with tf.gfile.GFile(filepath) as f:
|
|
|
|
+# size = f.Size()
|
|
|
|
+# print('Successfully downloaded', filename, size, 'bytes.')
|
|
|
|
+ return filepath
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _read32(bytestream):
|
|
|
|
+ dt = numpy.dtype(numpy.uint32).newbyteorder('>')
|
|
|
|
+ return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def extract_images(filename):
|
|
|
|
+ """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
|
|
|
|
+ print('Extracting', filename)
|
|
|
|
+ with open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
|
|
|
|
+ magic = _read32(bytestream)
|
|
|
|
+ if magic != 2051:
|
|
|
|
+ raise ValueError(
|
|
|
|
+ 'Invalid magic number %d in MNIST image file: %s' %
|
|
|
|
+ (magic, filename))
|
|
|
|
+ num_images = _read32(bytestream)
|
|
|
|
+ rows = _read32(bytestream)
|
|
|
|
+ cols = _read32(bytestream)
|
|
|
|
+ buf = bytestream.read(rows * cols * num_images)
|
|
|
|
+ data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
|
|
|
+ data = data.reshape(num_images, rows, cols, 1)
|
|
|
|
+ return data
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def dense_to_one_hot(labels_dense, num_classes):
|
|
|
|
+ #print(labels_dense.shape)
|
|
|
|
+ #print(labels_dense)
|
|
|
|
+ """Convert class labels from scalars to one-hot vectors."""
|
|
|
|
+ num_labels = labels_dense.shape[0]
|
|
|
|
+ #print(num_labels)
|
|
|
|
+ index_offset = numpy.arange(num_labels) * num_classes
|
|
|
|
+ #print(index_offset)
|
|
|
|
+ labels_one_hot = numpy.zeros((num_labels, num_classes))
|
|
|
|
+ #print(labels_one_hot.shape)
|
|
|
|
+ #print(labels_one_hot)
|
|
|
|
+ #print(labels_dense.shape)
|
|
|
|
+ labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
|
|
|
+ #print(labels_one_hot.shape)
|
|
|
|
+ return labels_one_hot
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def extract_labels(filename, one_hot=False, num_classes=10):
|
|
|
|
+ """Extract the labels into a 1D uint8 numpy array [index]."""
|
|
|
|
+ print('Extracting', filename)
|
|
|
|
+# with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
|
|
|
|
+ with open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
|
|
|
|
+ magic = _read32(bytestream)
|
|
|
|
+ if magic != 2049:
|
|
|
|
+ raise ValueError(
|
|
|
|
+ 'Invalid magic number %d in MNIST label file: %s' %
|
|
|
|
+ (magic, filename))
|
|
|
|
+ num_items = _read32(bytestream)
|
|
|
|
+ buf = bytestream.read(num_items)
|
|
|
|
+ labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
|
|
|
+ if one_hot:
|
|
|
|
+ return dense_to_one_hot(labels, num_classes)
|
|
|
|
+ return labels
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class DataSet(object):
|
|
|
|
+
|
|
|
|
+ def __init__(self, images, labels, fake_data=False, one_hot=False,
|
|
|
|
+ dtype=tf.float32):
|
|
|
|
+ """Construct a DataSet.
|
|
|
|
+ one_hot arg is used only if fake_data is true. `dtype` can be either
|
|
|
|
+ `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
|
|
|
|
+ `[0, 1]`.
|
|
|
|
+ """
|
|
|
|
+ dtype = tf.as_dtype(dtype).base_dtype
|
|
|
|
+ if dtype not in (tf.uint8, tf.float32):
|
|
|
|
+ raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
|
|
|
|
+ dtype)
|
|
|
|
+ if fake_data:
|
|
|
|
+ self._num_examples = 10000
|
|
|
|
+ self.one_hot = one_hot
|
|
|
|
+ else:
|
|
|
|
+ assert images.shape[0] == labels.shape[0], (
|
|
|
|
+ 'images.shape: %s labels.shape: %s' % (images.shape,
|
|
|
|
+ labels.shape))
|
|
|
|
+ self._num_examples = images.shape[0]
|
|
|
|
+
|
|
|
|
+ # Convert shape from [num examples, rows, columns, depth]
|
|
|
|
+ # to [num examples, rows*columns] (assuming depth == 1)
|
|
|
|
+ assert images.shape[3] == 1
|
|
|
|
+ images = images.reshape(images.shape[0],
|
|
|
|
+ images.shape[1] * images.shape[2])
|
|
|
|
+ if dtype == tf.float32:
|
|
|
|
+ # Convert from [0, 255] -> [0.0, 1.0].
|
|
|
|
+ images = images.astype(numpy.float32)
|
|
|
|
+ images = numpy.multiply(images, 1.0 / 255.0)
|
|
|
|
+ self._images = images
|
|
|
|
+ self._labels = labels
|
|
|
|
+ self._epochs_completed = 0
|
|
|
|
+ self._index_in_epoch = 0
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def images(self):
|
|
|
|
+ return self._images
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def labels(self):
|
|
|
|
+ return self._labels
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def num_examples(self):
|
|
|
|
+ return self._num_examples
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def epochs_completed(self):
|
|
|
|
+ return self._epochs_completed
|
|
|
|
+
|
|
|
|
+ def next_batch(self, batch_size, fake_data=False):
|
|
|
|
+ """Return the next `batch_size` examples from this data set."""
|
|
|
|
+ if fake_data:
|
|
|
|
+ fake_image = [1] * 784
|
|
|
|
+ if self.one_hot:
|
|
|
|
+ fake_label = [1] + [0] * 9
|
|
|
|
+ else:
|
|
|
|
+ fake_label = 0
|
|
|
|
+ return [fake_image for _ in xrange(batch_size)], [
|
|
|
|
+ fake_label for _ in xrange(batch_size)]
|
|
|
|
+ start = self._index_in_epoch
|
|
|
|
+ self._index_in_epoch += batch_size
|
|
|
|
+ if self._index_in_epoch > self._num_examples:
|
|
|
|
+ # Finished epoch
|
|
|
|
+ self._epochs_completed += 1
|
|
|
|
+ # Shuffle the data
|
|
|
|
+ perm = numpy.arange(self._num_examples)
|
|
|
|
+ numpy.random.shuffle(perm)
|
|
|
|
+ self._images = self._images[perm]
|
|
|
|
+ self._labels = self._labels[perm]
|
|
|
|
+ # Start next epoch
|
|
|
|
+ start = 0
|
|
|
|
+ self._index_in_epoch = batch_size
|
|
|
|
+ assert batch_size <= self._num_examples
|
|
|
|
+ end = self._index_in_epoch
|
|
|
|
+# print(self._images[start])
|
|
|
|
+ return self._images[start:end], self._labels[start:end]
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
|
|
|
|
+ class DataSets(object):
|
|
|
|
+ pass
|
|
|
|
+ data_sets = DataSets()
|
|
|
|
+
|
|
|
|
+ if fake_data:
|
|
|
|
+ def fake():
|
|
|
|
+ return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
|
|
|
|
+ data_sets.train = fake()
|
|
|
|
+ data_sets.validation = fake()
|
|
|
|
+ data_sets.test = fake()
|
|
|
|
+ return data_sets
|
|
|
|
+
|
|
|
|
+ TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
|
|
|
|
+ TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
|
|
|
|
+ TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
|
|
|
|
+ TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
|
|
|
|
+ VALIDATION_SIZE = 5000
|
|
|
|
+
|
|
|
|
+ local_file = maybe_download(TRAIN_IMAGES, train_dir)
|
|
|
|
+ train_images = extract_images(local_file)
|
|
|
|
+
|
|
|
|
+ local_file = maybe_download(TRAIN_LABELS, train_dir)
|
|
|
|
+ train_labels = extract_labels(local_file, one_hot=one_hot)
|
|
|
|
+
|
|
|
|
+ local_file = maybe_download(TEST_IMAGES, train_dir)
|
|
|
|
+ test_images = extract_images(local_file)
|
|
|
|
+
|
|
|
|
+ local_file = maybe_download(TEST_LABELS, train_dir)
|
|
|
|
+ test_labels = extract_labels(local_file, one_hot=one_hot)
|
|
|
|
+
|
|
|
|
+ validation_images = train_images[:VALIDATION_SIZE]
|
|
|
|
+ validation_labels = train_labels[:VALIDATION_SIZE]
|
|
|
|
+
|
|
|
|
+ train_images = train_images[VALIDATION_SIZE:]
|
|
|
|
+ train_labels = train_labels[VALIDATION_SIZE:]
|
|
|
|
+ data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
|
|
|
|
+ data_sets.validation = DataSet(validation_images, validation_labels,dtype=dtype)
|
|
|
|
+
|
|
|
|
+ test_images = test_images[VALIDATION_SIZE:]
|
|
|
|
+ test_labels = test_labels[VALIDATION_SIZE:]
|
|
|
|
+ data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
|
|
|
|
+ data_sets.validation = DataSet(validation_images, validation_labels,dtype=dtype)
|
|
|
|
+
|
|
|
|
+ #print(test_images[3][15]);
|
|
|
|
+ #print(len(test_images[0][0]));
|
|
|
|
+ # print (len(test_images))
|
|
|
|
+ # if(files==null) return
|
|
|
|
+ # test_images1,test_labels1=GetImage(files)
|
|
|
|
+ # # print(((test_images1[0])))
|
|
|
|
+ # # test_images=array(test_images1)
|
|
|
|
+ # # test_labels=array(test_labels1)
|
|
|
|
+ # # print (test_labels[0])
|
|
|
|
+ # # test_images_demo=empty(1)
|
|
|
|
+ # # test_images_demo.append(test_images1)
|
|
|
|
+ # # print(shape((test_images1)))
|
|
|
|
+ # data_sets.test = DataSet(test_images1, test_labels1, dtype=dtype)
|
|
|
|
+ return data_sets
|