import json import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from net_utils import run_lstm, col_name_encode class SelNumPredictor(nn.Module): def __init__(self, N_word, N_h, N_depth, use_ca): super(SelNumPredictor, self).__init__() self.N_h = N_h self.use_ca = use_ca self.sel_num_lstm = nn.LSTM(input_size=N_word, hidden_size=N_h/2, num_layers=N_depth, batch_first=True, dropout=0.3, bidirectional=True) self.sel_num_att = nn.Linear(N_h, 1) self.sel_num_col_att = nn.Linear(N_h, 1) self.sel_num_out = nn.Sequential(nn.Linear(N_h, N_h), nn.Tanh(), nn.Linear(N_h,4)) self.softmax = nn.Softmax(dim=-1) self.sel_num_col2hid1 = nn.Linear(N_h, 2 * N_h) self.sel_num_col2hid2 = nn.Linear(N_h, 2 * N_h) if self.use_ca: print "Using column attention on select number predicting" def forward(self, x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num): B = len(x_len) max_x_len = max(x_len) # Predict the number of select part # First use column embeddings to calculate the initial hidden unit # Then run the LSTM and predict select number e_num_col, col_num = col_name_encode(col_inp_var, col_name_len, col_len, self.sel_num_lstm) num_col_att_val = self.sel_num_col_att(e_num_col).squeeze() for idx, num in enumerate(col_num): if num < max(col_num): num_col_att_val[idx, num:] = -1000000 num_col_att = self.softmax(num_col_att_val) K_num_col = (e_num_col * num_col_att.unsqueeze(2)).sum(1) sel_num_h1 = self.sel_num_col2hid1(K_num_col).view(B, 4, self.N_h/2).transpose(0,1).contiguous() sel_num_h2 = self.sel_num_col2hid2(K_num_col).view(B, 4, self.N_h/2).transpose(0,1).contiguous() h_num_enc, _ = run_lstm(self.sel_num_lstm, x_emb_var, x_len, hidden=(sel_num_h1, sel_num_h2)) num_att_val = self.sel_num_att(h_num_enc).squeeze() for idx, num in enumerate(x_len): if num < max_x_len: num_att_val[idx, num:] = -1000000 num_att = self.softmax(num_att_val) K_sel_num = (h_num_enc * num_att.unsqueeze(2).expand_as( h_num_enc)).sum(1) sel_num_score = self.sel_num_out(K_sel_num) return sel_num_score