import torch
from sqlnet.utils import *
from sqlnet.model.sqlnet import SQLNet
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', action='store_true', help='Whether use gpu')
parser.add_argument('--toy', action='store_true', help='Small batchsize for fast debugging.')
parser.add_argument('--ca', action='store_true', help='Whether use column attention.')
parser.add_argument('--train_emb', action='store_true', help='Use trained word embedding for SQLNet.')
parser.add_argument('--output_dir', type=str, default='', help='Output path of prediction result')
args = parser.parse_args()
n_word=300
if args.toy:
use_small=True
gpu=args.gpu
batch_size=16
else:
use_small=False
gpu=args.gpu
batch_size=64
dev_sql, dev_table, dev_db, test_sql, test_table, test_db = load_dataset(use_small=use_small, mode='test')
word_emb = load_word_emb('data/char_embedding')
model = SQLNet(word_emb, N_word=n_word, use_ca=args.ca, gpu=gpu, trainable_emb=args.train_emb)
model_path = 'saved_model/best_model'
print "Loading from %s" % model_path
model.load_state_dict(torch.load(model_path))
print "Loaded model from %s" % model_path
print "Start to predict test set"
predict_test(model, batch_size, test_sql, test_table, test_db, args.output_dir)
print "Output path of prediction result is %s" % args.output_dir