12345678910111213141516171819202122232425262728293031323334353637383940 |
- import torch
- from sqlnet.utils import *
- from sqlnet.model.sqlnet import SQLNet
- import argparse
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--gpu', action='store_true', help='Whether use gpu')
- parser.add_argument('--toy', action='store_true', help='Small batchsize for fast debugging.')
- parser.add_argument('--ca', action='store_true', help='Whether use column attention.')
- parser.add_argument('--train_emb', action='store_true', help='Use trained word embedding for SQLNet.')
- parser.add_argument('--output_dir', type=str, default='', help='Output path of prediction result')
- args = parser.parse_args()
- n_word=300
- if args.toy:
- use_small=True
- gpu=args.gpu
- batch_size=16
- else:
- use_small=False
- gpu=args.gpu
- batch_size=64
- dev_sql, dev_table, dev_db, test_sql, test_table, test_db = load_dataset(use_small=use_small, mode='test')
- word_emb = load_word_emb('data/char_embedding')
- model = SQLNet(word_emb, N_word=n_word, use_ca=args.ca, gpu=gpu, trainable_emb=args.train_emb)
- model_path = 'saved_model/best_model'
- print "Loading from %s" % model_path
- model.load_state_dict(torch.load(model_path))
- print "Loaded model from %s" % model_path
- dev_acc = epoch_acc(model, batch_size, dev_sql, dev_table, dev_db)
- print 'Dev Logic Form Accuracy: %.3f, Execution Accuracy: %.3f' % (dev_acc[1], dev_acc[2])
- print "Start to predict test set"
- predict_test(model, batch_size, test_sql, test_table, args.output_dir)
- print "Output path of prediction result is %s" % args.output_dir
|