123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- import os
- import cv2
- import numpy as np
- import time
- import random
- class Wxjump(object):
- '''微信跳一跳助手 '''
-
- def __init__(self):
- pass
- def get_screenshot(id):
- os.system('adb shell screencap -p /sdcard/%s.png' % str(id))
- os.system('adb pull /sdcard/%s.png ./data/result/' % str(id))
- def jump(distance):
- # 这个参数还需要针对屏幕分辨率进行优化
- press_time = int(distance * 1.35)
- # 生成随机手机屏幕模拟触摸点
- # 模拟触摸点如果每次都是同一位置,成绩上传可能无法通过验证
- rand = random.randint(0, 9) * 10
- cmd = ('adb shell input swipe %i %i %i %i ' + str(press_time)) \
- % (320 + rand, 410 + rand, 320 + rand, 410 + rand)
- os.system(cmd)
- print(cmd)
- def get_center(img_canny, ):
- # 利用边缘检测的结果寻找物块的上沿和下沿
- # 进而计算物块的中心点
- y_top = np.nonzero([max(row) for row in img_canny[400:]])[0][0] + 400
- x_top = int(np.mean(np.nonzero(canny_img[y_top])))
- y_bottom = y_top + 50
- for row in range(y_bottom, H):
- if canny_img[row, x_top] != 0:
- y_bottom = row
- break
- x_center, y_center = x_top, (y_top + y_bottom) // 2
- return img_canny, x_center, y_center
- # 第一次跳跃的距离是固定的
- # jump(530)
- time.sleep(1)
- # 匹配小跳棋的模板
- temp1 = cv2.imread('data/template/temp_player.jpg', 0)
- w1, h1 = temp1.shape[::-1] #77*209
- # 匹配游戏结束画面的模板
- temp_end = cv2.imread('data/template/temp_end.jpg', 0)
- # 匹配中心小圆点的模板
- temp_white_circle = cv2.imread('data/template/temp_white_circle.jpg', 0)
- w2, h2 = temp_white_circle.shape[::-1]
- # 循环直到游戏失败结束
- for i in range(100):
- get_screenshot(i)
- img_rgb = cv2.imread('data/result/%s.png' % i, 0)
- # 如果在游戏截图中匹配到带"再玩一局"字样的模板,则循环中止
- res_end = cv2.matchTemplate(img_rgb, temp_end, cv2.TM_CCOEFF_NORMED)
- if cv2.minMaxLoc(res_end)[1] > 0.95:
- print('Game over!')
- break
- # 模板匹配截图中小跳棋的位置
- res1 = cv2.matchTemplate(img_rgb, temp1, cv2.TM_CCOEFF_NORMED)
- min_val1, max_val1, min_loc1, max_loc1 = cv2.minMaxLoc(res1)
- center1_loc = (max_loc1[0] + 39, max_loc1[1] + 189)
- # 先尝试匹配截图中的中心原点,
- # 如果匹配值没有达到0.95,则使用边缘检测匹配物块上沿
- res2 = cv2.matchTemplate(img_rgb, temp_white_circle, cv2.TM_CCOEFF_NORMED)
- min_val2, max_val2, min_loc2, max_loc2 = cv2.minMaxLoc(res2)
- if max_val2 > 0.95:
- print('found white circle!')
- x_center, y_center = max_loc2[0] + w2 // 2, max_loc2[1] + h2 // 2
- else:
- # 边缘检测
- img_rgb = cv2.GaussianBlur(img_rgb, (5, 5), 0)
- canny_img = cv2.Canny(img_rgb, 1, 10)
- H, W = canny_img.shape
- # 消去小跳棋轮廓对边缘检测结果的干扰
- for k in range(max_loc1[1] - 10, max_loc1[1] + 189):
- for b in range(max_loc1[0] - 10, max_loc1[0] + 100):
- canny_img[k][b] = 0
- cv2.imwrite('data/result/canny_img%s.png' % i, canny_img)
- img_rgb, x_center, y_center = get_center(canny_img)
- # 将图片输出以供调试
- img_rgb = cv2.circle(img_rgb, (x_center, y_center), 10, 255, -1)
- # cv2.rectangle(canny_img, max_loc1, center1_loc, 255, 2)
- cv2.imwrite('data/result/last.png', img_rgb)
- distance = (center1_loc[0] - x_center) ** 2 + (center1_loc[1] - y_center) ** 2
- distance = distance ** 0.5
- jump(distance)
- time.sleep(random.randrange(11,20)/10.0)
|