1 |
- {"fpe1ki18v228w00":[{"mooc_class":"第一章 概述","_id":"5ca1682c31bd47137685c408","frst_name":"1.1\t机器学习定义和典型应用","static_page_url":"https://www.xuexi.cn/d45a7c5b0c00760d039221a1d5053b57/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":1,"status":"已发布"},{"mooc_class":"第一章 概述","_id":"5ca1686f6c4687573d7a7bbf","frst_name":"1.2 机器学习和人工智能的关系","static_page_url":"https://www.xuexi.cn/d5c27d1c2a2be714985c6c39c9baef7f/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":2,"status":"已发布"},{"mooc_class":"第一章 概述","_id":"5ca1689292530556cff8f04e","frst_name":"1.3 深度学习方法和其它人工智能方法的共性和差异","static_page_url":"https://www.xuexi.cn/47c5e6d199a49228fb12bf6b72608d63/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":3,"status":"已发布"},{"mooc_class":"第一章 概述","_id":"5ca168a464c923146eea5a73","frst_name":"1.4 机器学习和数据挖掘的关系","static_page_url":"https://www.xuexi.cn/b8ec9a87fdbf7db50b45270bc0f1e11d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":4,"status":"已发布"},{"mooc_class":"第一章 概述","_id":"5ca168bd1e73720a9030fe1c","frst_name":"1.5 机器学习和统计学习的关系","static_page_url":"https://www.xuexi.cn/ae002e71b1ee055eb1e7e5a819f68d21/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":5,"status":"已发布"},{"mooc_class":"第一章 概述","_id":"5ca168ce4b05bd3140828196","frst_name":"1.6 机器学习的发展历程","static_page_url":"https://www.xuexi.cn/c3b3193012c469f11987dde2cc542bda/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":6,"status":"已发布"},{"mooc_class":"第一章 概述","_id":"5ca168dce43fcb3155fdd96d","frst_name":"1.7 大数据机器学习的主要特点","static_page_url":"https://www.xuexi.cn/6048081efce74df5de2401abf761517e/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":7,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16aadf2269035d8fb9616","frst_name":"2.1 机器学习的基本术语","static_page_url":"https://www.xuexi.cn/c5b764301fb621134dbf4ae3f79d5d95/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":8,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16ac284b34a0b139ed8e9","frst_name":"2.2 监督学习","static_page_url":"https://www.xuexi.cn/3c3a08501eb957c2f98117a3b5f3d564/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":9,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16ad405cc0a2da14ccbe7","frst_name":"2.3 假设空间","static_page_url":"https://www.xuexi.cn/3e1b4b2040350de432112d0144186757/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":10,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16ae639128d1c6e7a37fe","frst_name":"2.4 学习方法三要素","static_page_url":"https://www.xuexi.cn/bfba8bcee07c2143fabddb86b6da69eb/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":11,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16b009ac80851e61c2f96","frst_name":"2.5 奥卡姆剃刀定理","static_page_url":"https://www.xuexi.cn/b1851c1636146f7baed6de9e4c280e9f/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":12,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16b12cb0f9324afe3c91b","frst_name":"2.6 没有免费的午餐定理","static_page_url":"https://www.xuexi.cn/c1850f6d9648ad0a5eb0afc0cad41ec5/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":13,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16b24aa822431806f03ac","frst_name":"2.7 训练误差和测试误差","static_page_url":"https://www.xuexi.cn/2ce85b2e6a7d6d58c953b72514782d9c/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":14,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16b365afba8502d9f12a4","frst_name":"2.8 过拟合与模型选择","static_page_url":"https://www.xuexi.cn/a851e5f423fe8fd1d1ae861d796bec2d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":15,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16b4432715e1c9a2ce05b","frst_name":"2.9 泛化能力","static_page_url":"https://www.xuexi.cn/2210247d283be6f368d8d802bafc63d3/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":16,"status":"已发布"},{"mooc_class":"第二章 机器学习基本概念","_id":"5ca16b546c4687573d7a7bc3","frst_name":"2.10 生成模型和判别模型","static_page_url":"https://www.xuexi.cn/570927779b5097fdcb49b82ad02f8044/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":17,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca173bd78c5f0157f6534e4","frst_name":"3.1 留出法","static_page_url":"https://www.xuexi.cn/13b3f27fb07b1c29b30240c4cce61e14/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":18,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca17418b8b164114f68bdb1","frst_name":"3.2 交叉验证法","static_page_url":"https://www.xuexi.cn/d61bd4830c752c2a5f3b890d1caff36d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":19,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca17428d78ae91cc12bd071","frst_name":"3.3 自助法","static_page_url":"https://www.xuexi.cn/61e8abcf5c0b3517434a42b9a539b933/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":20,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca1744fefc03a35ce5678bd","frst_name":"3.4 性能度量","static_page_url":"https://www.xuexi.cn/612474f3f94c8bd720bca1111eeba92e/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":21,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca1745e3788b653cbfa4cb6","frst_name":"3.5 PR曲线","static_page_url":"https://www.xuexi.cn/70238daf3092e8bf65de1683ca870e75/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":22,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca1748972a783613e674bae","frst_name":"3.6 ROC和AUC曲线","static_page_url":"https://www.xuexi.cn/a3777374e46ca980b910b7ff5b056c2b/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":23,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca17498485a560ad3f03293","frst_name":"3.7 代价敏感错误率","static_page_url":"https://www.xuexi.cn/46ee72290e11a63215dacd29c5c482b6/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":24,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca174a7eac9911cc7c5bdfb","frst_name":"3.8 假设检验","static_page_url":"https://www.xuexi.cn/57916dc3f53d4e311543f6e5620fcb48/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":25,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca174bbe9ae795546696262","frst_name":"3.9 T检验","static_page_url":"https://www.xuexi.cn/a5f296936f5c43bb92e1fa5033c5628e/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":26,"status":"已发布"},{"mooc_class":"第三章 模型性能评估","_id":"5ca174cf24e2f62c1e79ea5f","frst_name":"3.10 偏差和方差","static_page_url":"https://www.xuexi.cn/f9ed2d693815d76ace26112cb3fba8b1/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":27,"status":"已发布"},{"mooc_class":"第四章 感知机","_id":"5ca174e45eed890aff62670a","frst_name":"4.1 感知机模型","static_page_url":"https://www.xuexi.cn/023eec4b50b491b347619324fd3c33da/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":28,"status":"已发布"},{"mooc_class":"第四章 感知机","_id":"5ca1af12922ecd1c7f1abe43","frst_name":"4.2 感知机学习策略","static_page_url":"https://www.xuexi.cn/8c79310a37ea1db908bc39c67764c033/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":29,"status":"已发布"},{"mooc_class":"第四章 感知机","_id":"5ca1af273fb3086bd1ec053f","frst_name":"4.3 感知机学习算法","static_page_url":"https://www.xuexi.cn/04ad4b00d32d56193d68496ae66bd52c/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":30,"status":"已发布"},{"mooc_class":"第五章 聚类","_id":"5ca1af3c99dd271c31ac436c","frst_name":"5.1 原型聚类描述","static_page_url":"https://www.xuexi.cn/8d5c41e1787ce7f2ac1e1057ffd4a6fa/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":31,"status":"已发布"},{"mooc_class":"第五章 聚类","_id":"5ca1af4eefc03a35ce5678ec","frst_name":"5.2 性能度量","static_page_url":"https://www.xuexi.cn/985604664fb90134c047cf63e53d8e2d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":32,"status":"已发布"},{"mooc_class":"第五章 聚类","_id":"5ca1af678f9dda611861c395","frst_name":"5.3.1 原型聚类 k均值算法","static_page_url":"https://www.xuexi.cn/e624ebb0857baf701170fcf8bdd0ba1d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":33,"status":"已发布"},{"mooc_class":"第五章 聚类","_id":"5ca1af7639128d1c6e7a383a","frst_name":"5.3.2 原型聚类 学习向量算法","static_page_url":"https://www.xuexi.cn/a16d8bc7b87ffe14f6bd7befc43810db/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":34,"status":"已发布"},{"mooc_class":"第五章 聚类","_id":"5ca1af8781849657692444c7","frst_name":"5.3.3 原型聚类 密度聚类","static_page_url":"https://www.xuexi.cn/0f6e5fa14a616116da95348ec9ca7a74/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":35,"status":"已发布"},{"mooc_class":"第五章 聚类","_id":"5ca1afbdb1d5cc51bab8d2a2","frst_name":"5.3.4 原型聚类 层次聚类","static_page_url":"https://www.xuexi.cn/a493144196fb79b9d7f8062370d622d2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":36,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b2c248974361f778a0e1","frst_name":"6.1 综述","static_page_url":"https://www.xuexi.cn/cf2c6e7f2e6ce152243c8a4d8368a1fa/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":37,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b2d34b05bd31408281da","frst_name":"6.2 概率图模型","static_page_url":"https://www.xuexi.cn/0906fb2e77bb0c492b4b26eb4fb85e03/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":38,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b2e25993e01164d9cdb1","frst_name":"6.3 贝叶斯网络","static_page_url":"https://www.xuexi.cn/945da2c0dcf25f03955ada23d4d219b6/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":39,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b2f932715e1c9a2ce09f","frst_name":"6.4 朴素贝叶斯分类器","static_page_url":"https://www.xuexi.cn/22304261cc8270a14cc2b2feadbb1816/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":40,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b30c24e2f62c1e79ea92","frst_name":"6.5 半朴素贝叶斯分类器","static_page_url":"https://www.xuexi.cn/dcd321a7c5fc15a5a95ba15ef6204743/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":41,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b31bd84eed110dc6a156","frst_name":"6.6 贝叶斯网络结构学习推断","static_page_url":"https://www.xuexi.cn/692e83a3538059f5c6e07f15db5628a2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":42,"status":"已发布"},{"mooc_class":"第六章 贝叶斯分类器及图模型","_id":"5ca1b32a4a86311485f37e35","frst_name":"6.7 吉布斯采样","static_page_url":"https://www.xuexi.cn/cd528ce9fea23080467897fae557499f/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":43,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b678e5f56451a6a177a2","frst_name":"7.1 本章简介","static_page_url":"https://www.xuexi.cn/43f0e532b1eac6c21bbde9f4d7035617/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":44,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b68de2504a11447372d0","frst_name":"7.2 决策树模型与学习基本概念","static_page_url":"https://www.xuexi.cn/37e7c86e7e1ec595aaf5f0bd0814d287/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":45,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b69f90006c250eeff34e","frst_name":"7.3 信息量和熵","static_page_url":"https://www.xuexi.cn/819f26b99b04bd21606d2b537a54c722/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":46,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b6af461819506c6577ba","frst_name":"7.4 决策树的生成","static_page_url":"https://www.xuexi.cn/b3ac0a7ca7faedfa245a81f3f751aebe/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":47,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b6bdcb0f9324afe3c968","frst_name":"7.5 决策树的减枝","static_page_url":"https://www.xuexi.cn/27b9901834adf68e2d525659c9a53a81/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":48,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b6cc48974361f778a0ef","frst_name":"7.6 CART算法","static_page_url":"https://www.xuexi.cn/3747cde01269729569c4799fcea046ec/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":49,"status":"已发布"},{"mooc_class":"第七章 决策树和随机森林","_id":"5ca1b6ef812382116fcd586f","frst_name":"7.7 随机森林","static_page_url":"https://www.xuexi.cn/5a0dc5005f341138a5b7bc5f58bbb672/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":50,"status":"已发布"},{"mooc_class":"第八章 逻辑斯谛回归与最大熵模型","_id":"5ca1b78a485a560ad3f032cf","frst_name":"8.1 本章简介","static_page_url":"https://www.xuexi.cn/2d7e1877d4306b3caf5ca33856b79e78/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":51,"status":"已发布"},{"mooc_class":"第八章 逻辑斯谛回归与最大熵模型","_id":"5ca1b7c564c923146eea5acd","frst_name":"8.2 逻辑斯谛回归模型","static_page_url":"https://www.xuexi.cn/41d5bc9ab7f734ba29d46edc7fd1d177/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":52,"status":"已发布"},{"mooc_class":"第八章 逻辑斯谛回归与最大熵模型","_id":"5ca1b7d9461819506c6577bf","frst_name":"8.3 最大熵模型","static_page_url":"https://www.xuexi.cn/167891331394962876c1e684bd8e5b60/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":53,"status":"已发布"},{"mooc_class":"第八章 逻辑斯谛回归与最大熵模型","_id":"5ca1b7b23620ae42a40b8da1","frst_name":"8.4 模型学习的最优化方法","static_page_url":"https://www.xuexi.cn/74ce97fc87c648b49b31b95b118b4477/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":54,"status":"已发布"},{"mooc_class":"第九章 SVM","_id":"5ca1bab8d6b506115afb4f2b","frst_name":"9.1 本章简介","static_page_url":"https://www.xuexi.cn/3b36e9f8e5f833ff58e8cd2e6af0437b/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":55,"status":"已发布"},{"mooc_class":"第九章 SVM","_id":"5ca1bad4e8b7f50abc75c1ca","frst_name":"9.2 SVM简介","static_page_url":"https://www.xuexi.cn/0ce50975c0a1bf424f9eecf69b3eaaa4/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":56,"status":"已发布"},{"mooc_class":"第九章 SVM","_id":"5ca1bae41e73720a9030fe67","frst_name":"9.3 线性可分支持向量机","static_page_url":"https://www.xuexi.cn/001a52f5306171793ac1d0fa87cd7edb/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":57,"status":"已发布"},{"mooc_class":"第九章 SVM","_id":"5ca1bb088e119a555b1f84e3","frst_name":"9.4 凸优化问题的基本概念","static_page_url":"https://www.xuexi.cn/eaadfe83bc475c68cb6256205d3bfefc/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":58,"status":"已发布"},{"mooc_class":"第九章 SVM","_id":"5ca1bb193788b653cbfa4d02","frst_name":"9.5 支持向量的确切定义","static_page_url":"https://www.xuexi.cn/27a73131caa7fe5d7ddd95d3276f93f0/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":59,"status":"已发布"},{"mooc_class":"第九章 SVM","_id":"5ca1bb2d8061af7d7bd375d3","frst_name":"9.6 线性支持向量机","static_page_url":"https://www.xuexi.cn/77404f9059626fa63610445d51b3631d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":60,"status":"已发布"},{"mooc_class":"第十章 核方法与非线性SVM","_id":"5ca1ba99eac9911cc7c5be2d","frst_name":"10.1 本章简介","static_page_url":"https://www.xuexi.cn/03187a0829621afc4d43347c38629b39/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":61,"status":"已发布"},{"mooc_class":"第十章 核方法与非线性SVM","_id":"5ca1b9f8c3244b1124aaef3f","frst_name":"10.2 泛函基础知识","static_page_url":"https://www.xuexi.cn/7c131bd12fa839ccd45118c8804da762/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":62,"status":"已发布"},{"mooc_class":"第十章 核方法与非线性SVM","_id":"5ca1bd5424aa0d1284b5cf57","frst_name":"10.3 核函数和非线性支持向量机","static_page_url":"https://www.xuexi.cn/dc6447eec235700839344fa33cf3add2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":63,"status":"已发布"},{"mooc_class":"第十章 核方法与非线性SVM","_id":"5ca1bd6d48974361f778a0f8","frst_name":"10.4 序列最小最优化算法","static_page_url":"https://www.xuexi.cn/2e4fbdf674f41e4a21b099772b936b7c/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":64,"status":"已发布"},{"mooc_class":"第十一章 降维与度量学习","_id":"5ca1bde8a98fc72e6dc31c0b","frst_name":"11.1 本章简介","static_page_url":"https://www.xuexi.cn/41c737740f4b112b03596ca8e2d76cd7/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":65,"status":"已发布"},{"mooc_class":"第十一章 降维与度量学习","_id":"5ca1be1d5a7a0c1c95b80142","frst_name":"11.2 k近邻学习","static_page_url":"https://www.xuexi.cn/31e50dde1ed526e585d4b234ab22c81b/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":66,"status":"已发布"},{"mooc_class":"第十一章 降维与度量学习","_id":"5ca1be7b1e73720a9030fe78","frst_name":"11.3 降维嵌入","static_page_url":"https://www.xuexi.cn/c810e68a0eb103ea2ddb47ce666951e4/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":67,"status":"已发布"},{"mooc_class":"第十一章 降维与度量学习","_id":"5ca1be93f8eda1147b142d23","frst_name":"11.4 主成分分析","static_page_url":"https://www.xuexi.cn/6cba243825b5b16f26a6ffc0f08c450d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":68,"status":"已发布"},{"mooc_class":"第十一章 降维与度量学习","_id":"5ca1bea7695dd160b6458842","frst_name":"11.5 核化线性降维","static_page_url":"https://www.xuexi.cn/cd3ab8c8b235b56c05b27485e8c31452/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":69,"status":"已发布"},{"mooc_class":"第十一章 降维与度量学习","_id":"5ca1beebe5f56451a6a177ad","frst_name":"11.6 流型学习和度量学习","static_page_url":"https://www.xuexi.cn/8b39616e3e2fa783fbbd56a97877287a/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":70,"status":"已发布"},{"mooc_class":"第十二章 提升方法","_id":"5ca1c16a81849657692444f8","frst_name":"12.1 提升方法Adaboost算法","static_page_url":"https://www.xuexi.cn/71ed48ec98fe2a487b1dd56aea52d2df/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":71,"status":"已发布"},{"mooc_class":"第十二章 提升方法","_id":"5ca1c180461819506c6577d0","frst_name":"12.2 Adaboost算法的训练误差分析","static_page_url":"https://www.xuexi.cn/2258b0a7e558b2dcc88a1cb857e4a8b2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":72,"status":"已发布"},{"mooc_class":"第十二章 提升方法","_id":"5ca1c19680dfcf2e9946d238","frst_name":"12.3 Adaboost算法的解释","static_page_url":"https://www.xuexi.cn/3adae0f95457a27e0c62bae640353558/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":73,"status":"已发布"},{"mooc_class":"第十二章 提升方法","_id":"5ca1c1c93fb3086bd1ec0562","frst_name":"12.4 Adaboost的实现","static_page_url":"https://www.xuexi.cn/4cbc654599baac14050d121a1859651d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":74,"status":"已发布"},{"mooc_class":"第十三章 EM算法及混合高斯模型","_id":"5ca1c448f2269035d8fb9680","frst_name":"13.1 本章简介","static_page_url":"https://www.xuexi.cn/0b7a8e016d012dcf0fe883bb71331928/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":75,"status":"已发布"},{"mooc_class":"第十三章 EM算法及混合高斯模型","_id":"5ca1c45fe9ae7955466962b5","frst_name":"13.2 问题提出","static_page_url":"https://www.xuexi.cn/5cc51a32315173629dbfe35ed8e4aec7/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":76,"status":"已发布"},{"mooc_class":"第十三章 EM算法及混合高斯模型","_id":"5ca1c48672a783613e674bf8","frst_name":"13.3 EM算法的引入","static_page_url":"https://www.xuexi.cn/b42feee7691ece45284b7e64afc19d08/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":77,"status":"已发布"},{"mooc_class":"第十三章 EM算法及混合高斯模型","_id":"5ca1c49aaa822431806f041b","frst_name":"13.4 EM算法的收敛性","static_page_url":"https://www.xuexi.cn/faee94f7e9177f4058a6c62d4c7b27b2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":78,"status":"已发布"},{"mooc_class":"第十三章 EM算法及混合高斯模型","_id":"5ca1c4aff2269035d8fb9681","frst_name":"13.5 EM算法在高斯混合模型学习中的应用","static_page_url":"https://www.xuexi.cn/fc55d5799bb967a4ab84da22961d2fee/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":79,"status":"已发布"},{"mooc_class":"第十三章 EM算法及混合高斯模型","_id":"5ca1c4cdc2b0875700998f10","frst_name":"13.6 EM算法的推广","static_page_url":"https://www.xuexi.cn/ebcc4e845a05df787448b52dcd760619/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":80,"status":"已发布"},{"mooc_class":"第十四章 计算学习理论","_id":"5ca1c7329ac80851e61c2ff9","frst_name":"14.1 本章简介","static_page_url":"https://www.xuexi.cn/88c9d9a62fd2fdf4cce74d423225db71/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":81,"status":"已发布"},{"mooc_class":"第十四章 计算学习理论","_id":"5ca1c754d1f15c518e818904","frst_name":"14.2 计算学习理论的基础知识","static_page_url":"https://www.xuexi.cn/a9bea52bf4dd2bd8027d95a158dc0e5f/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":82,"status":"已发布"},{"mooc_class":"第十四章 计算学习理论","_id":"5ca1c77793a80d3dfedfe21a","frst_name":"14.3 概率近似正确学习理论","static_page_url":"https://www.xuexi.cn/f49d8d052270984c54209dc01d60975a/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":83,"status":"已发布"},{"mooc_class":"第十四章 计算学习理论","_id":"5ca1c7b424e2f62c1e79eabc","frst_name":"14.4 有限假设空间","static_page_url":"https://www.xuexi.cn/8a4e490c86a3e67acaf7a5be3dd7c4da/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":84,"status":"已发布"},{"mooc_class":"第十四章 计算学习理论","_id":"5ca1c7d524aa0d1284b5cf73","frst_name":"14.5 VC维","static_page_url":"https://www.xuexi.cn/221ef2343463e9d4ca3c5277eabae121/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":85,"status":"已发布"},{"mooc_class":"第十四章 计算学习理论","_id":"5ca1c7fa5993e01164d9cded","frst_name":"14.6 学习稳定性","static_page_url":"https://www.xuexi.cn/04e4e3007f7c8338ec69de999ac569cb/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":86,"status":"已发布"},{"mooc_class":"第十五章 隐马尔可夫模型","_id":"5ca1c9112f8693773b2a0c18","frst_name":"15.1 本章简介","static_page_url":"https://www.xuexi.cn/32b6de0d7dfa3d10b20bb649a9218120/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":87,"status":"已发布"},{"mooc_class":"第十五章 隐马尔可夫模型","_id":"5ca1c9a34a86311485f37e6e","frst_name":"15.2 隐马尔科夫模型的基本概念","static_page_url":"https://www.xuexi.cn/6494f0683ad64e584d681c9b2dd48cde/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":88,"status":"已发布"},{"mooc_class":"第十五章 隐马尔可夫模型","_id":"5ca1c9ba80dfcf2e9946d251","frst_name":"15.3 概率计算算法","static_page_url":"https://www.xuexi.cn/99d39c75a847b6902bd78f056f5c450c/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":89,"status":"已发布"},{"mooc_class":"第十五章 隐马尔可夫模型","_id":"5ca1c9de99dd271c31ac4396","frst_name":"15.4 学习算法","static_page_url":"https://www.xuexi.cn/7a7a05d4b74884736b9cacbbfe91e1d2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":90,"status":"已发布"},{"mooc_class":"第十五章 隐马尔可夫模型","_id":"5ca1ca296c4687573d7a7c2b","frst_name":"15.5 预测算法","static_page_url":"https://www.xuexi.cn/9ad0985307a7ea6ae70772098fa6c68c/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":91,"status":"已发布"},{"mooc_class":"第十六章 条件随机场","_id":"5ca1cd6b31bd47137685c493","frst_name":"16.1 本章简介","static_page_url":"https://www.xuexi.cn/0a4fabc075f21298a3492932adce47db/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":92,"status":"已发布"},{"mooc_class":"第十六章 条件随机场","_id":"5ca1cdc184b34a0b139ed95a","frst_name":"16.2 概率无向图模型","static_page_url":"https://www.xuexi.cn/9d44f709a4b2ede9e50c95017d85f206/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":93,"status":"已发布"},{"mooc_class":"第十六章 条件随机场","_id":"5ca1cdfc5eed890aff626779","frst_name":"16.3 条件随机场的定义与形式","static_page_url":"https://www.xuexi.cn/f948aa0cf22c3ab0ca346aadecdaf2cb/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":94,"status":"已发布"},{"mooc_class":"第十六章 条件随机场","_id":"5ca1ce1faaf1ba0b2ee5aee0","frst_name":"16.4 条件随机场的计算问题","static_page_url":"https://www.xuexi.cn/58aef9ff330082ef6379833d3e3bcbf9/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":95,"status":"已发布"},{"mooc_class":"第十六章 条件随机场","_id":"5ca1ce35e5088751cb4a9908","frst_name":"16.5 条件随机场的学习算法","static_page_url":"https://www.xuexi.cn/1db45376041e8019c5cebc9dc2a9341d/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":96,"status":"已发布"},{"mooc_class":"第十六章 条件随机场","_id":"5ca1ce5ad6b506115afb4f57","frst_name":"16.6 条件随机场的预测算法","static_page_url":"https://www.xuexi.cn/2f46d1bd926d06567869751767d64f79/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":97,"status":"已发布"},{"mooc_class":"第十七章 概率图模型的学习与推断","_id":"5ca1d01a539473614471572f","frst_name":"17.1 本章简介","static_page_url":"https://www.xuexi.cn/f0eed1feee984ef6d99d68b05e8909d1/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":98,"status":"已发布"},{"mooc_class":"第十七章 概率图模型的学习与推断","_id":"5ca1d039eba7711cb05e3f5c","frst_name":"17.2 精确推断法:变量消去法和信念传播法","static_page_url":"https://www.xuexi.cn/dadad7d41a3e041e8eb023b8e0aac2cf/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":99,"status":"已发布"},{"mooc_class":"第十七章 概率图模型的学习与推断","_id":"5ca1d04baa4ea15199df2e3e","frst_name":"17.3 近似推断法:MCMC和变分推断","static_page_url":"https://www.xuexi.cn/7644d14412903271738d3232733746a2/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":100,"status":"已发布"},{"mooc_class":"第十八章 神经网络和深度学习","_id":"5ca1d07489399477153e67b6","frst_name":"18.1 神经网络的发展历程","static_page_url":"https://www.xuexi.cn/455855bc1a3ee70f828c6fb1b43781f3/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":101,"status":"已发布"},{"mooc_class":"第十八章 神经网络和深度学习","_id":"5ca1d09f6c4687573d7a7c37","frst_name":"18.2 神经网络的基本概念以及常见的神经网络(一)","static_page_url":"https://www.xuexi.cn/6424c068b2ee5a310a206272b7dff026/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":102,"status":"已发布"},{"mooc_class":"第十八章 神经网络和深度学习","_id":"5ca1d18deba7711cb05e3f5e","frst_name":"18.3 神经网络的基本概念以及常见的神经网络(二)","static_page_url":"https://www.xuexi.cn/b4615ee3d89883321e904ab8d6d20d8b/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":103,"status":"已发布"},{"mooc_class":"第十八章 神经网络和深度学习","_id":"5ca1d1a593a80d3dfedfe22b","frst_name":"18.4 玻尔兹曼机","static_page_url":"https://www.xuexi.cn/ca13a0f7770ae67eb537f8199d1faafa/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":104,"status":"已发布"},{"mooc_class":"第十八章 神经网络和深度学习","_id":"5ca1d1bbe5f56451a6a177d4","frst_name":"18.5 深度学习","static_page_url":"https://www.xuexi.cn/6ce756d1ef5df5d44eb664582ee0f1fc/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":105,"status":"已发布"},{"mooc_class":"第十九章 深度学习正则化方法","_id":"5ca1d1e0eac9911cc7c5be5a","frst_name":"19.1 深度学习简介和架构设计","static_page_url":"https://www.xuexi.cn/dd2fb955c74273f1adca3c7b53274872/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":106,"status":"已发布"},{"mooc_class":"第十九章 深度学习正则化方法","_id":"5ca1d28fcf1fac2e8e364d0e","frst_name":"19.2 计算图形式的反向传播算法","static_page_url":"https://www.xuexi.cn/3d5fb24e1a55c150e8c2cfa0040f0365/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":107,"status":"已发布"},{"mooc_class":"第十九章 深度学习正则化方法","_id":"5ca1d28a7e877a221122606c","frst_name":"19.3 深度学习的正则化方法(一)","static_page_url":"https://www.xuexi.cn/3d9104a06a09bdb3fda2fa57ebd383e3/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":108,"status":"已发布"},{"mooc_class":"第十九章 深度学习正则化方法","_id":"5ca1d2a7922ecd1c7f1abe8c","frst_name":"19.4 深度学习的正则化方法(二)","static_page_url":"https://www.xuexi.cn/c1d9f4db30e636f1040908f2e8ad082c/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":109,"status":"已发布"},{"mooc_class":"第二十章 深度学习优化方法","_id":"5ca1d2c286c6fd3830106ebc","frst_name":"20.1 深度学习的优化问题","static_page_url":"https://www.xuexi.cn/3c86cda5a8d6133764e56d6b82283c82/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":110,"status":"已发布"},{"mooc_class":"第二十章 深度学习优化方法","_id":"5ca1d37389399477153e67bb","frst_name":"20.2 神经网络优化的挑战","static_page_url":"https://www.xuexi.cn/051b7c7d007b1fbfd9ed1880e82838e5/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":111,"status":"已发布"},{"mooc_class":"第二十章 深度学习优化方法","_id":"5ca1d39393a80d3dfedfe230","frst_name":"20.3 神经网络的优化算法","static_page_url":"https://www.xuexi.cn/148472b54cbde9f72c027368782b3017/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":112,"status":"已发布"},{"mooc_class":"第二十章 深度学习优化方法","_id":"5ca1d3a72bc9eb50620ab015","frst_name":"20.4 相关策略","static_page_url":"https://www.xuexi.cn/e4cfafc5dfd3eae50dbf316efee722b7/b2e5aa79be613aed1f01d261c4a2ae17.html","sort":113,"status":"已发布"}],"fp1oqv1mthfpmo01":{"list":{"thumb_image":"[{\"name\":\"asset-v1_TsinghuaX+70240403+2019_T1+type@asset+block@封面.jpg\",\"size\":37705,\"type\":\"image/jpeg\",\"imageInfo\":\"https://bootcdn.xuexi.cn/dyxx_5a1d70322da1335610ea6a87/1553823417018/9eda2394b610698818972935a9a65d53.jpg\",\"thumbInfo\":\"https://bootcdn.xuexi.cn/dyxx_5a1d70322da1335610ea6a87/1553823417018/9eda2394b610698818972935a9a65d53.jpg?x-oss-process=image/resize,w_200\"}]","frst_name":"大数据机器学习","content":null,"original_time":"2019-03-29 00:00","summary":"《大数据机器学习》课程是面向信息学科的高年级本科生或研究生开设的基础理论课,目的是培养学生深入理解大数据机器学习理论基础,牢固掌握大数据机器学习方法,并能够解决实际问题等综合能力。课程的主要内容包括:统计学习基本理论,机器学习基本方法,深度学习理论和方法。"}},"sysQuery":{"pageId":"9b0f04ec6509904be734f5f609a3604a","mooc":"大数据机器学习","post_id":"5c9d76c0a98fc72e6dc31b2b"}}
|