123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- import torch
- import numpy as np
- from models.experimental import attempt_load
- from utils.general import non_max_suppression, scale_coords, letterbox
- from utils.torch_utils import select_device
- import cv2
- from random import randint
- class Detector(object):
- ''' 预测 '''
-
- def __init__(self):
- ''' 初始化 '''
- self.img_size = 640
- self.threshold = 0.4
- self.max_frame = 160
- self.half = False
- if torch.cuda.is_available():
- self.half = True
- self.init_model()
- def init_model(self):
- self.weights = 'weights/final.pt'
- self.device = '0' if torch.cuda.is_available() else 'cpu'
- self.device = select_device(self.device)
- model = attempt_load(self.weights, map_location=self.device)
- model.to(self.device).eval()
- model.half() if self.half else model.float()
- # torch.save(model, 'test.pt')
- self.m = model
- self.names = model.module.names if hasattr(
- model, 'module') else model.names
- self.colors = [
- (randint(0, 255), randint(0, 255), randint(0, 255)) for _ in self.names
- ]
- def preprocess(self, img):
- img0 = img.copy()
- # 图像缩放到指定尺寸
- img = letterbox(img, new_shape=self.img_size)[0]
- # 从BGR转换为RGB, 通过transpose(2, 0, 1)将通道维度移动到最前面
- img = img[:, :, ::-1].transpose(2, 0, 1)
- img = np.ascontiguousarray(img)
- img = torch.from_numpy(img).to(self.device)
- img = img.half() # 半精度
- img /= 255.0 # 图像归一化
- if img.ndimension() == 3:
- img = img.unsqueeze(0)
- return img0, img
- def plot_bboxes(self, image, bboxes, line_thickness=None):
- ''' 画框
- Args: image: 图片
- bboxes: 框
- line_thickness: 线的厚度
- Returns: image: 画框后的图片
- '''
- tl = line_thickness or round(
- 0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 # line/font thickness
-
- for (x1, y1, x2, y2, cls_id, conf) in bboxes:
- color = self.colors[self.names.index(cls_id)]
- c1, c2 = (x1, y1), (x2, y2)
- cv2.rectangle(image, c1, c2, color,
- thickness=tl, lineType=cv2.LINE_AA)
- tf = max(tl - 1, 1) # font thickness
- t_size = cv2.getTextSize(
- cls_id, 0, fontScale=tl / 3, thickness=tf)[0]
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
- cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(image, '{} ID-{:.2f}'.format(cls_id, conf), (c1[0], c1[1] - 2), 0, tl / 3,
- [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
- return image
- def detect(self, im):
- ''' 预测
- Args: im: 图片
- Returns: im: 预测后的图片
- '''
- im0, img = self.preprocess(im)
- pred = self.m(img, augment=False)[0]
- pred = pred.float()
- pred = non_max_suppression(pred, self.threshold, 0.3)
- pred_boxes = []
- image_info = {}
- count = 0
- for det in pred:
- if det is not None and len(det):
- det[:, :4] = scale_coords(
- img.shape[2:], det[:, :4], im0.shape).round()
- for *x, conf, cls_id in det:
- lbl = self.names[int(cls_id)]
- x1, y1 = int(x[0]), int(x[1])
- x2, y2 = int(x[2]), int(x[3])
- pred_boxes.append(
- (x1, y1, x2, y2, lbl, conf))
- count += 1
- key = '{}-{:02}'.format(lbl, count)
- image_info[key] = ['{}×{}'.format(
- x2-x1, y2-y1), np.round(float(conf), 3)]
- im = self.plot_bboxes(im, pred_boxes)
- return im, image_info
|