app.py 837 B

1234567891011121314151617181920212223242526272829
  1. #!/usr/bin/env python
  2. # -*- encoding: utf-8 -*-
  3. """
  4. @Contact : liuyuqi.gov@msn.cn
  5. @Time : 2024/06/04
  6. @License : Copyright © 2017-2022 liuyuqi. All Rights Reserved.
  7. @Desc : 文本分类
  8. """
  9. import gradio as gr
  10. import pandas as pd
  11. from ultralytics import YOLO
  12. from skimage import data
  13. from PIL import Image
  14. model = YOLO('yolov8n-cls.pt')
  15. def predict(img):
  16. result = model.predict(source=img)
  17. df = pd.Series(result[0].names).to_frame()
  18. df.columns = ['names']
  19. df['probs'] = result[0].probs
  20. df = df.sort_values('probs',ascending=False)
  21. res = dict(zip(df['names'],df['probs']))
  22. return res
  23. gr.close_all()
  24. demo = gr.Interface(fn = predict,inputs = gr.Image(type='pil'), outputs = gr.Label(num_top_classes=5),
  25. examples = ['cat.jpeg','people.jpeg','coffee.jpeg'])
  26. demo.launch()