flask 眼疾医疗系统

liuyuqi-dellpc f0db35b0b7 init 1 year ago
.vscode f0db35b0b7 init 1 year ago
apps f0db35b0b7 init 1 year ago
docs f0db35b0b7 init 1 year ago
frontend f0db35b0b7 init 1 year ago
paddlex f0db35b0b7 init 1 year ago
static f0db35b0b7 init 1 year ago
.dockerignore f0db35b0b7 init 1 year ago
.env f0db35b0b7 init 1 year ago
.gitignore f0db35b0b7 init 1 year ago
Dockerfile f0db35b0b7 init 1 year ago
README.md f0db35b0b7 init 1 year ago
app.py f0db35b0b7 init 1 year ago
docker-compose.debug.yml f0db35b0b7 init 1 year ago
docker-compose.yml f0db35b0b7 init 1 year ago
requirements.txt f0db35b0b7 init 1 year ago

README.md

PanddleX

基于Paddle+Flask的眼部医疗辅助系统, 本项目基于PaddleX提供的FastSCNN语义分割模型,在眼部图像视盘分割数据集上进行训练,并开发了前后端分离项目。

后端代码基于Flask开发,前端WEB界面基于VUE开发。

Develop

模型训练

web部署

cd frontend
npm install
npm run build
# npm run serve

cp -r dist/* ../backend/static
cd ..

virtualenv .venv
pip install -r requirements.txt
python app.py

模型预测

使用模型进行预测,同时使用pdx.seg.visualize将结果可视化,可视化结果将保存到./output/deeplab下,其中weight代表原图的权重,即mask可视化结果与原图权重因子。

import paddlex as pdx
model = pdx.deploy.Predictor('inference_model')
image_name = 'optic_disc_seg/JPEGImages/H0005.jpg'
result = model.predict(image_name)
pdx.seg.visualize(image_name, result, weight=0.4, save_dir='./output/deeplab')
2021-01-23 08:16:45 [INFO]  The visualized result is saved as ./output/deeplab/visualize_H0005.jpg
!zip -r inference_model/ weights.zip
    zip warning: name not matched: weights.zip

zip error: Nothing to do! (try: zip -r inference_model/ . -i weights.zip)

Reference

License