Google TensorFlow 的 .NET 标准绑定,用于使用 C# 和 F# 开发、训练和部署机器学习模型。 https://github.com/SciSharp/TensorFlow.NET
天问 d970fa92e1 Update 'README.md' | 1 year ago | |
---|---|---|
README.md | 1 year ago |
Tensorflow.NET是AI框架TensorFlow在.NET平台上的实现,支持C#和F#,可以用来搭建深度学习模型并进行训练和推理,并内置了Numpy API,可以用来进行其它科学计算。
Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实现,因此使用时无需额外的环境,可以很方便地用NuGet直接安装使用。并且dotnet团队提供的ML.NET也依赖于Tensorflow.NET,支持调用Tensorflow.NET进行训练和推理,可以很方便地融入.NET生态。
与tensorflow相同,Tensorflow.NET也内置了Keras这一高级API,只要在安装Tensorflow.NET的同时安装Tensorflow.Keras就可以使用,Keras支持以模块化的方式调用模型,给模型的搭建提供了极大的便利。
中文 | English
当前主分支与Tensorflow2.10版本相对应,支持Eager Mode,同时也支持v1的静态图。
SciSharp STACK
开源社区的目标是构建.NET平台下易用的科学计算库,而Tensorflow.NET就是其中最具代表性的仓库之一。在深度学习领域Python是主流,无论是初学者还是资深开发者,模型的搭建和训练都常常使用Python写就的AI框架,比如tensorflow。但在实际应用深度学习模型的时候,又可能希望用到.NET生态,亦或只是因为.NET是自己最熟悉的领域,这时候Tensorflow.NET就有显著的优点,因为它不仅可以和.NET生态很好地贴合,其API还使得开发者很容易将Python代码迁移过来。下面的对比就是很好的例子,Python代码和C#代码有着高度相似的API,这会使得迁移的时候无需做过多修改。
除了高度相似的API外,Tensorflow.NET与tensorflow也已经打通数据通道,tensorflow训练并保存的模型可以在Tensorflow.NET中直接读取并继续训练或推理,反之Tensorflow.NET保存的模型也可以在tensorflow中读取,这大大方便了模型的训练和部署。
与其它类似的库比如TensorFlowSharp相比,Tensorflow.NET的实现更加完全,提供了更多的高级API,使用起来更为方便,更新也更加迅速。
基本介绍与简单用例:Tensorflow.NET Documents
详细文档:The Definitive Guide to Tensorflow.NET
运行例程常见问题:Tensorflow.NET FAQ
安装可以在NuGet包管理器中搜索包名安装,也可以用下面命令行的方式。
安装分为两个部分,第一部分是Tensorflow.NET的主体:
### 安装Tensorflow.NET
PM> Install-Package TensorFlow.NET
### 安装Tensorflow.Keras
PM> Install-Package TensorFlow.Keras
第二部分是计算支持部分,只需要根据自己的设备和系统选择下面之一即可:
### CPU版本,支持Windows、Linux和Mac
PM> Install-Package SciSharp.TensorFlow.Redist
### Windows下的GPU版本(需要安装CUDA和cuDNN)
PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
### Linux下的GPU版本(需要安装CUDA和cuDNN)
PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
下面给出两个简单的例子,更多例子可以在[TensorFlow.NET Examples]中查看。
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
using Tensorflow;
using Tensorflow.NumPy;
// Parameters
var training_steps = 1000;
var learning_rate = 0.01f;
var display_step = 100;
// Sample data
var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
var n_samples = X.shape[0];
// We can set a fixed init value in order to demo
var W = tf.Variable(-0.06f, name: "weight");
var b = tf.Variable(-0.73f, name: "bias");
var optimizer = keras.optimizers.SGD(learning_rate);
// Run training for the given number of steps.
foreach (var step in range(1, training_steps + 1))
{
// Run the optimization to update W and b values.
// Wrap computation inside a GradientTape for automatic differentiation.
using var g = tf.GradientTape();
// Linear regression (Wx + b).
var pred = W * X + b;
// Mean square error.
var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
// should stop recording
// Compute gradients.
var gradients = g.gradient(loss, (W, b));
// Update W and b following gradients.
optimizer.apply_gradients(zip(gradients, (W, b)));
if (step % display_step == 0)
{
pred = W * X + b;
loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}");
}
}
这一用例也可以在Jupyter Notebook Example进行运行.
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
using Tensorflow;
using Tensorflow.NumPy;
var layers = keras.layers;
// input layer
var inputs = keras.Input(shape: (32, 32, 3), name: "img");
// convolutional layer
var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs);
x = layers.Conv2D(64, 3, activation: "relu").Apply(x);
var block_1_output = layers.MaxPooling2D(3).Apply(x);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output));
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output));
x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output);
x = layers.GlobalAveragePooling2D().Apply(x);
x = layers.Dense(256, activation: "relu").Apply(x);
x = layers.Dropout(0.5f).Apply(x);
// output layer
var outputs = layers.Dense(10).Apply(x);
// build keras model
var model = keras.Model(inputs, outputs, name: "toy_resnet");
model.summary();
// compile keras model in tensorflow static graph
model.compile(optimizer: keras.optimizers.RMSprop(1e-3f),
loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true),
metrics: new[] { "acc" });
// prepare dataset
var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data();
// normalize the input
x_train = x_train / 255.0f;
// training
model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)],
batch_size: 64,
epochs: 10,
validation_split: 0.2f);
// save the model
model.save("./toy_resnet_model");
此外,Tensorflow.NET也支持用F#搭建上述模型进行训练和推理。
TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.7, cuda 11 | tensorflow 2.10, cuda 11 |
---|---|---|---|---|---|---|
tf.net 0.10x, tf.keras 0.10 | x | |||||
tf.net 0.7x, tf.keras 0.7 | x | |||||
tf.net 0.4x, tf.keras 0.5 | x | |||||
tf.net 0.3x, tf.keras 0.4 | x | |||||
tf.net 0.2x | x | x | ||||
tf.net 0.15 | x | x | ||||
tf.net 0.14 | x |
tf.net 0.4x -> tf native 2.4
tf.net 0.6x -> tf native 2.6
tf.net 0.7x -> tf native 2.7
tf.net 0.10x -> tf native 2.10
...
如果使用过程中发现有缺失的版本,请告知我们,谢谢!
请注意Tensorflow.NET与Tensorflow.Keras版本存在一一对应关系,请安装与Tensorflow.NET对应的Tensorflow.Keras版本。